Scanned Datasheet

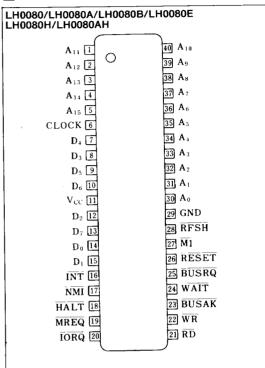
Notice: You cannot copy or search the text in this PDF file, because this PDF file is converted from a scanned image of printed materials.

Resources

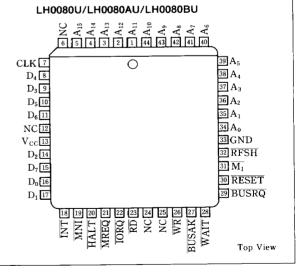
Datasheet Archive - Datasheet & Application Note Search Engine SupplyFrame - Datasheet & Application Note Search Engine

LH0080 Z80 CPU Central Processing Unit

Description


The LH0080 Z80 CPU (Z80 CPU for short below) is a general-purpose 8-bit microprocessor fabricated using an N-channel silicon-gate process.

The LH0080A Z80A, LH0080B Z80B, LH0080E Z80E CPU are the high speed version which can operate at the 4MHz, 6MHz and 8MHz system clock, respectively.


Features

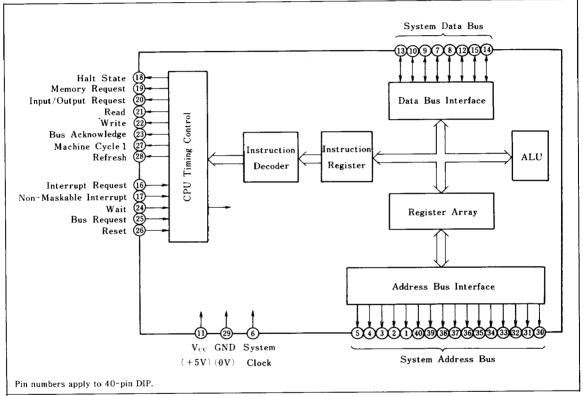
- 1. 8-bit parallel processing microprocessor
- 2. N-channel silicon-gate process
- 158 instructions (The instruction of the 8080A are included as a subset; 8080A software compatibility is maintained)
- 4. 22 registers
- 5. The capability of 3 modes maskable interrupt and non-maskable interrupt
- 6. On-chip dynamic memory refresh counter
- 7. Instruction fetch cycle : $1.6 \,\mu\text{s}(Z80)$, $1.0 \,\mu\text{s}$ (Z80A), $0.67 \,\mu\text{s}$ (Z80B), $0.5 \,\mu\text{s}$ (Z80E)
- 8. Single +5V power supply and single phase clock
- 9. All inputs and outputs fully TTL compatible
- 10. 40-pin DIP (DIP40-P-600)
 - 44-pin QFP (QFP44-P-1010A)
 - 44-pin QFJ (QFJ44-P-S650)

Pin Connections

LH0080M/LH0080AM 22 GND* INT 34 NMI 35 $21 A_{15}$ HALT 36 20 A₁₄ MREQ 37 19 A₁₃ 18 A₁₂ IORQ 38 17 A11 RD 39 WR 40 16 A₁₀ 15 A. BUSAK 41 WAIT 42 14 A₈ 13 A7 BUSRQ 43 12 A₆ NC 44 1 2 3 4 5 6 7 8 9 10 11 RFSH[GND*

*The GND pins must be connected to the GND level.

SHARP


5

Ordering Information

Product	Z80 CPU	Z80A CPU	Z80B CPU	Z80E CPU	Package	Operating
Clock frequency	2.5MHz	4MHz	6MHz	8MHz	lackage	temperature
	LH0080	LH0080A	LH0080B	LH0080E	40-pin DIP	0°C to +70°C
	LH0080H*	LH0080AH*			40-pin Dir	-20°C to +85°C
Model No.	LH0080M	LH0080AM			44-pin QFP	0°C to +60°C
	LH0080U	LH0080AU	LH0080BU		44-pin QFJ	0°C to +70°C

^{*} H suffix is a wide temperature spec, packaged in 40-pin DIP.

Block Diagram

Pin Description

Signal	Pin name	1/0	Function
A ₀ -A ₁₅	Address bus	3-state O	System address bus
D_0 - D_7	Data bus	Bidirectional 3-state	System data bus
M1	Machine cycle one	0	Active "Low". Indicates that the current machine cycl is the OP code fetch cycle of an instruction execution.
MREQ	Memory request	3-state O	Active "Low". Indicates that the address bus holds valid address for a memory read or memory write operation.
ĪORQ	I/O request	3-state O	Active "Low". Indicates that the lower 8 bits of the address bus holds a valid I/O address for an I/O reasor write operation. Also generated concurrently wit MI during an interrupt acknowledge cycle to indicate a interrupt response.
RD	Memory read	3-state O	Active "Low". Indicates that the CPU wants to read dat from memory or an 1/O device.
WR	Memory write	3-state O	Active "Low". Indicates that the CPU data bus hold valid data to be stored at the addressed memory or 1/6 location.
RFSH .	Refresh	0	Active "Low". Indicates that the lower 7 bits of the system address bus can be used as a refresh address to the system's dynamic memories. Together with MREQ a "Low".
HALT	Halt state	0	Active "Low". Indicates that a Halt instruction is bein executed. While halted, the CPU executes NOPs to main tain memory refresh. The Halt state is cleared with RESET, NMI, or INT (when allowed).
WAIT	Wait	I	Active "Low". Indicates to the CPU that the addresse memory or I/O devices are not ready for a data transfer. The CPU continues to enter a wait state as long as this signal is active.
ĪNT	Maskable interrupt request	I	Active "Low". Generated by 1/O devices. The CPU hor ors a request at the end of the current instruction if the interrupt enable flip-flop is enabled.
NMI	Non-maskable interrupt request	1	Active "Low". Has a higher priority than INT. Alway recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flog Automatically forces the Z80 CPU to restart at location 0066H.
RESET	Reset	Ĭ	Active "Low". Resets the interrupt enable flip-flop, the program counter interrupt vector register and the mentory refresh register, and sets the interrupt status of Mode O, in order to initialize the CPU.
BUSRQ	Bus request	I	Active "Low". Has a higher priority than NMI. Alway recognized at the end of the current machine cycle. Act vated to allow a bus master other than the CPU to control the system bus.
BUSAK	Bus acknowledge	0	Active "Low". Indicates to the requesting device that the external circuitry can control the system bus.
CLOCK	System clock	I	Inputs + 5V single-phase clock.

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Note
Input voltage	V _{IN}	-0.3 to +7.0	V	
Output voltage	V _{OUT}	-0.3 to $+7.0$	V	
		0 to +70		1
Operating temperature	Topr	0 to +60	c	2
		-20 to +85		3
Storage temperature	Tstg	-65 to +150	r	

Note 1: 40-pin DIP and 44-pin QFJ Note 2: 44-pin QFP

Note 3: 40-pin DIP with wide temperature spec.

Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND (0V). Positive current flows into the referenced pin.

All ac parameters assume a load capacitance of 100 pF. Add 10 ns delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines.

DC Characteristics

 $(V_{CC} = 5V \pm 5\%, Ta = 0 \text{ to } +70 ^{\circ}\text{C}^{\text{Note 1}})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Clock input low voltage	V _{ILC}			-0.3		0.45	V
Clock input high voltage	V _{IHC}			$V_{\rm CC} = 0.6$		$V_{cc} + 0.3$	V
Input low voltage	V _{IL}			-0.3		0.8	V
Input high voltage	V _{IH}			2.0		V _{CC}	V
Output low voltage	V _{OL}	$I_{OL} = 1.8 \mathrm{mA}$				0.4	V
Output high voltage	V _{OH}	$I_{OH} = -250 \mu A$		2.4			V
			LH0080			150	mΑ
			LH0080A			200	m A
Current consumption	I _{cc}		LH0080B			200	mΑ
			LH0080E			200	m A
Input leakage current	I _{LI}	$0 \le V_{IN} \le V_{CC}$				10	μΑ
3-state output leakage current in float	I _{LEAK}	$V_{OUT} = 0.4 V$ to V	/ _{cc}			10	μΑ

Note 1: Ta=0 to +60°C for 44-pin QFP

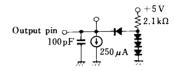
 $T_a = -20$ to $+85^{\circ}$ for 40-pin DIP with wide temperature spec.

Capacitance

(f=1 MHz, Ta=25%)

	1 1		24727	TVD	3.6.4.36	77 '.
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock capacitance	C _{CLOCK}	Ifd -id			35	рF
Input capacitance	C _{IN}	Unmeasured pins returned			5	рF
Output capacitance	C _{OUT}	to ground			10	рF

AC Characteristics


 $(V_{CC} = 5V \pm 5\%, Ta = 0 \text{ to } +70\%^{Note 1})$

			LHO	080	LHOO	80A	LHOC)80B	LH00	80E*	T.T. '.
No.	Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit
1	Clock cycle time	TcC	400*		250 *		165*		125*		ns
2	Clock pulse width (High)	TwCh	180*		110*		65*		55 *		ns
3	Clock pulse width (Low)	TwCl	180	2000	110	2000	65	2000	55	2000	ns
4	Clock fall time	TfC		30		30		20		10	ns
5	Clock rise time	TrC		30		30		20		10	ns
6	Clock † to address valid delay	TdCr (A)		145		110		90		80	ns
7	Addreess valid to MREQ ↓ delay	TdA (MREQf)	125*		65 *		35 *		20 *		ns
-8	Clock ↓ MREQ ↓ delay	TdCf (MREQf)		100		85		70		60	ns
9	Clock † to MREQ † delay	TdCr (MREQr)		100		85		70_		60	ns
10	MREQ pulse width (High)	TwMREQh	170*		110*		65*		45*		ns
11	MREQ pulse width (Low)	TwMREQ1	360 *		220*		135*		100*		ns
12	Clock ↓ to MREQ † delay	TdCf (MREQr)		100		85		70		60	ns
13	Clock ↓ to RD ↓ delay	TdCf (RDf)		130		95		80		70	ns
14	Clock † to RD † delay	TdCr (RDr)		100		85		70		60	ns
15	Data setup time to clock †	TsD (Cr)	50		35		30		30		ns
16	Data hold time from RD †	ThD (RDr)	0		0		0		0		ns
17	WAIT setup time to clock ↓	TsWAIT (Cf)	70		70		60		50		ns
18	WAIT hold time after clock ↓	ThWAIT (Cf)	0		0		0		0		ns
19	Clock ↑ to M1 ↓ delay	TdCr (M1f)		130		100		80		70	ns
20	Clock † to M1 † delay	TdCr (Mlr)		130		100		80		70	ns
21	Clock ↑ to RFSH ↓ delay	TdCr (RFSHf)		180		130		110		95	ns
22	Clock † to RFSH † delay	TdCr (RFSHr)		150		120		100		85	ns
23	Clock ↓ to RD ↑ delay	TdCf (RDr)		110		85		70_		60_	ns
24	Clock ↑ to RD ↓ delay	TdCr (RDf)		100		85		70		60	ns
	Data Setup to clock † during	/D D (00			50		40	İ	30		ns
25	M ₂ , M ₃ , M ₄ or M ₅ cycles	TsD (Cf)	60								
26	Address stable prior to IORQ \	TdA (lORQf)	320 *		180*		110*		75 *		ns
27	Clock † IORQ ↓ delay	TdCr (IORQf)		90		75		65		55	ns
28	Clock ↓ to IORQ ↑ delay	TdCf (IORQr)		110		85		70		60	ns
29	Data stable prior to WR ↓	TdDm (WRf)	190*		80*		25*		5*		ns
30	Clock ↓ WR ↓ delay	TdCf (WRf)		90		80		70		60	ns
31	WR pulse width	TwWR	360 *		220*		135*		100*		ns
32	Clock ↓ to WR ↑ delay	TdCr (WRr)		100	<u> </u>	80		70		60	ns
33	Data stable prior to WR	TdDi (WRf)	20*	•	-10*	-	-55 *	•	-55*		ns
34	Clock ↑ to WR ↓ delay	TdCr (WRf)		80		65		60	L	55	ns
35	Data stable from WR †	TdWRr (D)	120*	*	60*	-	30*	+	15	-	ns
36	Clock ↓ to HALT ↑ or ↓	TdCf (HALT)		300	<u> </u>	300		260	_	225	ns
37	NMI pulse width	TwNMI	80		80		70	1	80		ns
38	BUSREQ setup time to clock †	TsBUSRQ (Cr)	80		50		50		40		ns
39	BUSREQ hold time after clock 1	ThBUSRQ (Cr)	0		0	ļ	0		0	ļ	ns
40	Clock ↑ to BUSACK ↓ delay	TdCr (BUSAKf)		120		100	<u> </u>	90		80	ns
41	Clock ↓ to BUSACK ↑ delay	TdCf (BUSAKr)		110		100	<u> </u>	90		80	ns
42	Clock † to data float delay	TdCr (Dz)	<u> </u>	90		90		80		70	ns
	Clock † to control output float	TdCr (CTz)		110		80		70		60	ns
43	delay (MREQ, IORQ, RD, and WR)	Tuci (C12)		110	ļ	1 -00		ļ			
44	Clock † to address float delay	TdCr (Az)		110		90		80		70	ns
4.5	MREQ †, IORQ †, RD and WR †	TdCTr (A)	160	*	80*	*	35*	k	20	*	ns
45	to address hold time	Tuc II (A)	100	<u>L</u>							

↑ Rising edge, ↓ Falling edge
Note 1: Ta=0 to +60°C for 44-pin QFP.
Ta=-20 to +85°C for 40-pin DIP with wide temperature spec.

		6))	LHC	080	LHO	A080	LHO	080B	LH00	80E*	Unit
No.	Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	O IIII
46	RESET ↓ to clock ↑ setup time	TsRESET (Cr)	90		60_		60		45		ns
47	RESET from clock! † hold time	ThRESET (Cr)	0		0		0		0		ns
48	INT to clock † setup time	TsINTf (Cr)	80		80		70		55		ns
49	INT from clock † hold time	ThINTr (Cr)	0		0	_	0		0		ns_
50	M1 ↓ to IORQ ↓ delay	TdM1f (IORQf)	920*		565 *		365 *		270 *		ns
51	Clockk ↓ to IORQ ↓ delay	TdCf (IORQf)		110		85		70		60	ns _
52	Clock † to IORQ † delay	TdCf (IORQr)		100		85		70		60	ns
53	Clock ↓ to data valid delay	TdCf (D)		230		150		130		115	ns

All ac parameters assume a load capacitance of 100 pF. Add 10 μ s delay for each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines. *For clock periods other than the minimums shown in the table, calculate parameters using the following expressions.

■ Footnotes to AC Characteristics

No.	Symbol	LH0080	LH0080A	LH0080B	LH0080E
10.	TcC	TwCh+TwCl+TrC+TfC	TwCh+TwCl+TrC+TfC	TwCh+TwCl+TrC+TfC	TwCh+TwCl+TrC+TfC
			MAX. 200 µs	MAX. 200 µs	MAX. 200 μs
2	TwCh	MAX. 200 μs	TwCh+TfC-65	TwCh+TfC-50	TwCh+TfC-45
7	TdA (MREQf)				TwCh+TfC-20
10	TwMREQh	TwCh + TfC - 30	TwCh + TfC - 20	TwCh+TfC-20	
11	TwMREQ1	TcC-40	TcC-30	TcC-30	TcC-25
26	TdA (IORQf)	TcC-80	TcC-70	TcC-55	TcC-50
29	TdD (WRf)	TcC-210	TcC-170	TcC-140	TcC-120
31	TwWR	TcC-40	TcC-30	TcC-30	TcC-25
33	TdD (WRf)	TwCl+TrC-180	TwCl+TrC-140	TwCl+TrC-140	TwCl+TrC-120
35	TdWRr (D)	TwCl+TrC-80	TwCl+TrC-70	TwCl+TrC-55	TwCl+TrC-50
45	<u> </u>	TwCl+TrC-40	TwCl+TrC-50	TwCl+TrC-50	TwCl+TrC-45
50	TdMlf (IORQf)	2Tch + TwCh + TfC - 80	2TcC+TwCh+TfC-65	2TcC+TwCh+TfC-50	2TcC + TwCh + TfC - 45

 $V_{IH}=2.0V$ V

 $V_{1HC} = V_{CC} - 0.6V$

 $V_{OH} = 2.0V$ FLOAT = ± 0.5

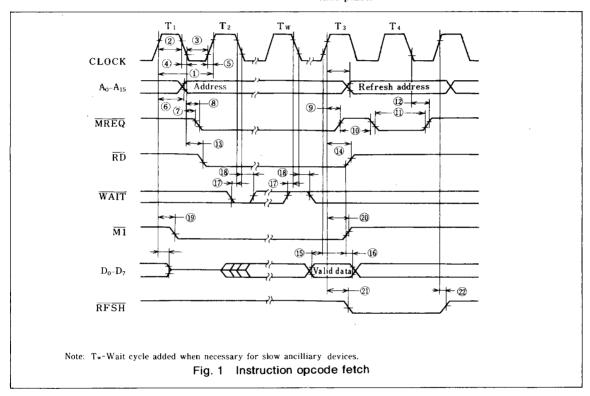
 $V_{\rm IL} = 0.8V$

 $V_{LC} = 0.45V$

 $V_{0L} = 0.8V$

CPU Timing

The Z80 CPU executes instructions by proceeding through a specific sequence of operations:


- Memory read or write
- I/O device read or write
- Interrupt acknowledge

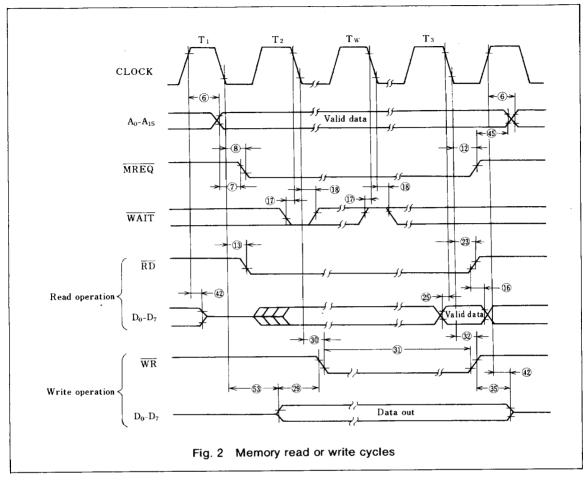
The basic clock period is referred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 for instance). Machine cycles can be extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user.

(1) Instruction Opcode Fetch

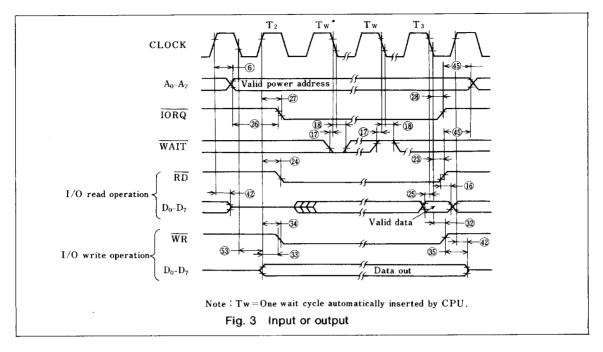
The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cycle (Fig. 1). Approximately one-half clock cycle later, MREQ goes active. When active, RD indicates that the memory data can be enabled onto the CPU data bus.

The CPU samples the \overline{WAIT} input with the falling edge of clock state T_2 . During clock states T_3 and T_1 of an $\overline{M1}$ cycle dynamic RAM refresh can occur while the CPU starts decoding and executing the instruction. When the Refresh Control signal becomes active, refreshing of dynamic memory can take place.

(2) Memory Read or Write Cycles

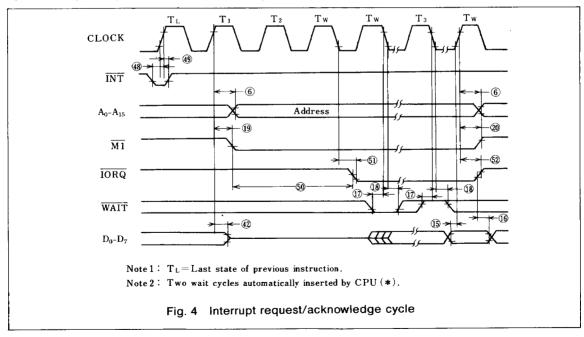

Fig. 2 shows the timing of memory read or write cycles other than an opcode fetch (M1) cycle. The \overline{MREQ} and \overline{RD} signals function exactly as in the fetch cycle. In a memory write cycle, MREQ also becomes active when the address bus is stable. The \overline{WR} line is active when the data bus is stable, so that it can be used directly as an R/\overline{W} pulse to most semiconductor memories.

(3) Input or Output Cycles


Fig. 3 shows the timing for an I/O read or I/O write operation.

During I/O operations, the CPU automatically inserts a single wait state ($T_{\rm w}$). This extra wait state allows sufficient time for an I/O port to decode the address from the port address lines.

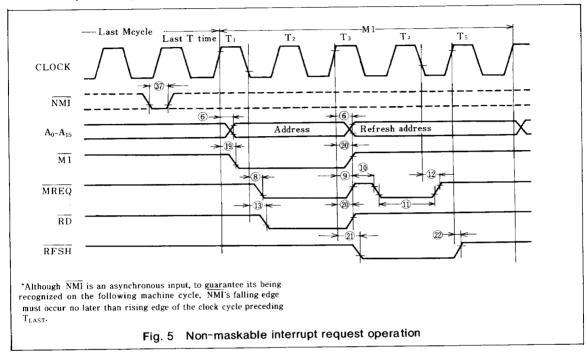
SHARP



(4) Interrupt request/acknowledge cycle

The CPU samples the interrupt signal with the rising edge of the last clock at the end of any instruction (Fig. 4). When an interrupt is accepted, a special $\overline{\text{M1}}$ cycle is generated. During this $\overline{\text{M1}}$ cy

cle, IORQ becomes active (instead of MREQ) to indicate that the interrupting device can place an 8-bit vector on the data bus. The CPU automatically adds two wait states to this cycle.

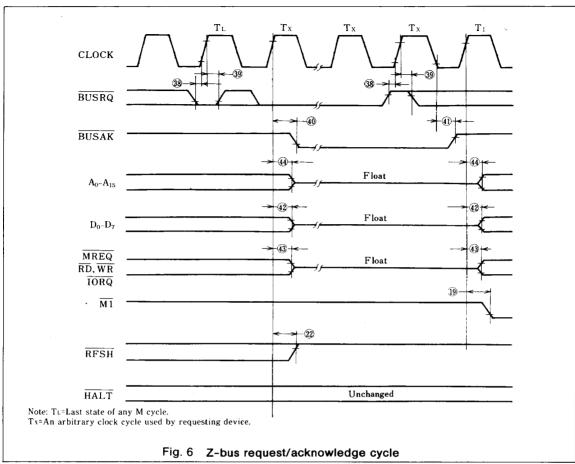


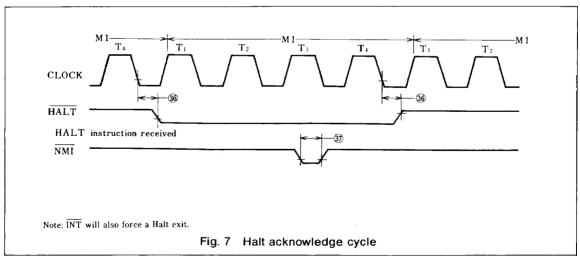
(5) Non-maskable interrupt request cycle

NMI is sampled at the same time as the maskable interrupt INT but has higher priority and cannot be disabled under software control.

The subsequent timing is similar to that of a nor-

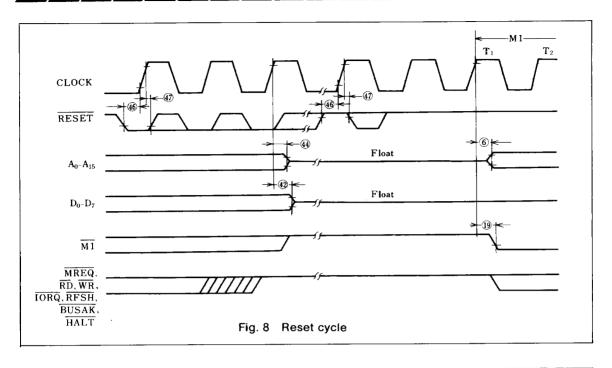
mal instruction fetch except that data put on the bus by the memory is ignored. The CPU instead executes a restart (RST) operation and jumps to the NMI service routine located at address 0066H (Fig. 5).

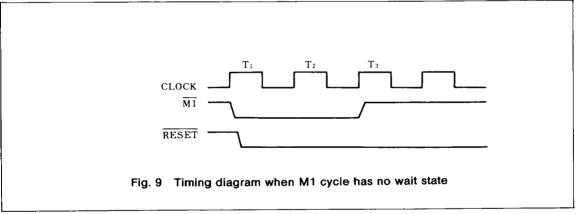

(6) Bus request/acknowledge cycle


The CPU samples BUSREQ with the rising edge of the last clock period of any machine cycle (Fig. 6). If BUSREQ is active, the CPU sets its address, data, and MREQ, IORQ, RD, and WR lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

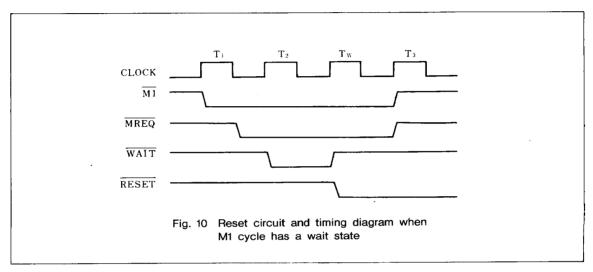
(7) Reset cycle

RESET must be active for at least three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and data buses float, and the control outputs are inactive. Once RESET goes inactive, three internal T cycles are consumed before the CPU resumes normal processing operation. RESET clears the PC register, so the first opcode fetch will be location 0000 (Fig. 8).





-SHARP


-SHARP -

(Reference)

The RAM contents may be adversely affected by resetting the CPU while it is in operation.

To prevent this, a RESET signal should be input in the following timings.

- (1) No walt state in the M1 cycle Input a \overline{RESET} signal to start sampling this signal at the clock rising in the M1 cycle's T_2 state. (See Fig. 9.)
- (2) A walt state in the M1 cycle Input a RESET signal to start sampling this signal at the clock rising in the M1 cycle's T_3 state. (See Fig. 10.)

5

CPU Registers

A Accumulator	F Flag Register	A' Accumulator	F' Flag Register
B General Purpose	C General Purpose	B' General Purpose	C' General Purpose
D General Purpose	E General Purpose	D' General Purpose	E' General Purpose
H General Purpose	L General Purpose	H' General Purpose	L' General Purpose

I Inte	rrupt Vector	R Memory Refresh
IX	Index Register	
IY	Index Register	
SP	Stack pointer	
PC	Program Counter	

Architecture

(1) CPU Registers

(i) **Program Counter (PC)** The program counter holds the 16 bits memory address of a current instruction. The CPU fetches the contents from memory address specified by the PC.

The PC feeds the data to the address line, automatically setting the PC value to ± 1 . When a program jump takes place, a new value is directly set to the PC.

(ii) Stack Pointer (SP) The stack pointer holds the top 16-bit address of the stack with an external RAM. An external file is based on LIFO (Last-In, First-Out).

The data are transferred between a CPU-specified register and the stack by a PUSH or POP instruction. The last-pushed data are first popped from the stack.

(iii) Index Register (IX & IY) For index mode addressing, there are independent index registers IX and IY, each of which holds 16-bit reference address.

In the index mode, the index registers are used to designate the memory area for data input/output.

With an INDEX ADDRESSING instruction, an effective address comes by adding a one-byte displacement to the register content. This displacement is an integral signed two's complement number

(iv) Interrupt Register (I) The Z80 CPU has indirect subroutine call mode for any memory area according to an interrupt. For this purpose, this register stores the upper 8 bits of memory address for vectored interrupt processing and the lower 8 bits for the interrupting device.

(v) Refresh Register (R) The built-in refresh register provides user-transparent dynamic memory refresh. Its lower 7 bits are automatically incremented during each instruction fetch cycle.

While the CPU records a fetched instruction and executes the instruction, the refresh register data are placed on the address bus by a REFRESH control signal.

(vi) Accumulator and Flag Register (A & F)
The CPU has also two independent 8-bit accumulators in combination with two 8-bit flag registers.

The accumulators store an operand or the results of an 8-bit operation. The flag registers, on the other hand, deal with the results of an 8-bit or 16-bit operation; for example, seeing if the result is equal to 0 or not.

(vii) **General-Purpose Registers** There are several pairs of general-purpose registers. In each pair, they can be used separately or as a 16-bit paired register. The paired registers are BC, DE, HL, as well as BC' DE' HL'. Either of these sets can work by an "Exchange" instruction at any time on a program.

(2) Arithmetic/Logical Unit (ALU)

An 8-bit arithmetic/logical operation instruction is executed by the ALU inside the CPU. The ALU connects to each register through the internal bus for data transfer between them.

(3) Instruction Register, CPU Control

Each instruction is read out of the memory, held in the instruction register, and decoded. The control unit controls this action and gives control signals necessary to read and write data from and to the registers.

The control unit also makes ALU control signal and other external control signals.

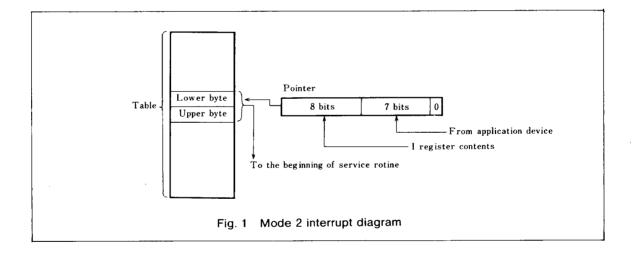
(Interrupts : General Operation) The Z80 CPU accepts two interrupt input signals: $\overline{\text{NMI}}$ and $\overline{\text{INT}}$. The $\overline{\text{NMI}}$ is a non-maskable interrupt and has the highest priority. $\overline{\text{INT}}$ is a lower priority interrupt and it requires that interrupts be enabled in software in order to operate.

(1) Non-Maskable Interrupt (NMI)

The non-maskable interrupt will be accepted at all times by the CPU.

After recognition of the NMI signal, the CPU jumps to restart location 0066H.

(2) Maskable Interrupt (INT)


The maskable interrupt, INT, has three programmable response modes available.

(i) Mode 0 Interrupt Operation. This mode is similar to the 8080A microprocessor interrupt service procedures. The interrupting de-

vice places an instruction on the data bus. This is a Restart instruction or a Call instruction.

- (ii) Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the $\overline{\text{NMI}}$. The principal difference is that the Mode 1 interrupt has a restart location of 0038H only.
- (iii) Mode 2 Interrupt Operation. This interrupt mode has been designed to utilize most effectively the capabilities of the Z80 microprocessor and its associated peripheral family. The interrupting peripheral device selects the starting address (16 bits) of the interrupt service routine. It does this by placing an 8-bit vector on the data bus during the interrupt acknowledge cycle. The CPU forms a pointer using this byte as the lower 8-bits and the contents of the I register as the upper 8-bits. This points to an entry in a table of addresses for interrupt service routines. The CPU then jumps to the routine at that address.

All the Z80 peripheral devices have the interrupt priority circuit with a daisy-chain configuration. During an interrupt acknowledge cycle, vectors are automatically fed. For more details, refer to the Z80 PIO description.

Instruction Set

Table 1 8-bit load group

Marini	Symbolic	OP code	HEX code			Fla	_			No. of	No. of	No. of	Comn	ients
Mnemonic	operation	76 543 210	(Basic)	С	Z	P/V	S	N	Н	Bytes	M Cycles	T States		
LD r, r'	r←r′	01 r r'	40+	•	•	•	•	•	•	1_	1	4		
LD r, n	r←n	00 r 110	06+	•	•	•	•	•	•	2	2	7		l 5
		← n →			L								r,r	Reg
LD r, (HL)	r← (HL)	01 r 110	46+	•	•	•	•	•	•	1	2	7	000	В
LD r, $(IX+d)$	$r \leftarrow (IX + d)$	11 011 101	DD	•	•	•	•	•	•	3	5	19	001	C
		01 r 110	46+										010	D
		← d →				1							011	E
LD r, (IY+d)	$r \leftarrow (IY + d)$	11 111 101	FD	•	•	•	•	•	•	3	5	19	100	Н
, ,		01 r 110	46	Ì					!				101	L
		← d →											111	A
LD (HL), r	(HL)←r	01 110 r	70+	•	•	•	•	•	•	1	2	7		
$\frac{DD}{LD} (IX + d), r$	(IX + d)←r	11 011 101	DD	•	•	•	•	•	•	3	5	19		
ED (IX + d), I	(III + u) · ·	01 110 r	70+	Ì							1			
		← d →	''		ļ				İ					
LD (IY+d), r	(IY+d)←r	11 111 101	FD	•	•	•	•	•	•	3	5	19		
LD (11 + u), 1	(11 / 4)-1	01 110 r	70+		-	-	i		_			,		
		← d →	'''									İ		
ID (III) =	(HL)←n	00 110 110	36	•	•	•	•	•	•	2	3	10		
LD (HL), n	(HL)#-II	← n →	30		-	-			-					
ID (IV I I)	(IV A) =	11 011 101	DD	•	•	•	•	•	•	4	5	19		
LD $(IX+d)$, n	$(IX + d) \leftarrow n$		36			•	_			1		10		
		00 110 110	36			1		ì						
		← d →												
		← n →			-	•	•	•	•	4	5	19		
LD (IY+d), n	$(IY + d) \leftarrow n$	11 111 101	FD	•	•	■	•	_	_	4	3	19		
		00 110 110	36				ļ							
		← d →				İ				1				
		← n →		_	+	-			1	-	 _	+=		
LD A, (BC)	A ← (BC)	00 001 010	0A	•	•	•	•	•	•	1	2	7		
LD A, (DE)	A ← (DE)	00 011 010	1 A	•	•	•	•	•	•	1	2	7		
LD A, (nn)	A ← (nn)	00 111 010	3A	•	•	•	•	•	•	3	4	13		
		← n →												
		← n →					<u> </u>		↓	1				
LD (BC), A	(BC) ← A	00 000 010	02	•	•	•	•	•	•	1	2	7		
LD (DE), A	(DE) ← A	00 010 010	12	•	•	•	•	•	•	1	2	7		
LD (nn), A	(nn) ← A	00 110 010	32	•	•	•	•	•	•	3	4	13		
		← n →				-								
		← n →						Ι.						
LD A, I	A ← I	11 101 101	ED	•	1	IFF	†	0	0	2	2	9		
=, -		01 010 111	57								1			
LD A, R	A ← R	11 101 101	ED	•	1	IFF	. ‡	0	0	2	2	9		
		01 011 111	5F				1] [
LD I, A	I ← A	11 101 101	ED	•	•	•	•	•	•	2	2	9		
1, 11		01 000 111	47											
LD R, A	R ← A	11 101 101	ED	•	•	•	•	•	•	2	2	9		
עט ווי, ה	14.	1 101 101	1 22	1	1	1	1 ~	1	1	1	1	, I		

Notes: r, r' means any of the registers A, B, C, D, E, H, L, IFF the content of the interrupt enable flip-flop, (IFF) is copied into the P/V flags: C (carry), Z (zero), S (sign), P/V (parity/overflow), H (half carry), N (add/substract).

• unchanged, 0 = reset, 1 = set, X = undefined.

-SHARP

^{: \$} set or reset according to the result of the operation.

Table 2 16-bit load group

Mnemonic	Symbolic)P co		HEX code			Fla		,		No. of	No. of	No. of	Comr	nents
Milemonic	operation	_		210	(Basic)	С	Z	P/V	S	N	H	Bytes	M Cycles			
LD dd, nn	dd ← nn	00	dd0 n	001	01+	•	•	•	•	•	•	3	3	10		
		-	n	-											dd	Reg.
LD IX, nn	IX ← nn	11		101	DD	•	•	•	•	•	•	4	4	14	00	BC
		00	100 n	001	21										01	DE
		-	n	-											10	HL
LD IY, nn	IY ← nn	11		101	FD	•	•	•	•	•	•	4	4	14	11	SP
		00	100	001	21											
		-	n n	→												
LD HL, (nn)	$H \leftarrow (nn+1)$	00		010	2A	•	•	•	•	•	•	3	5	16	nn : 2-byt	
, ,	L ← (nn)	+	n	→											Lower by	
ID 44 ()	44 4 4 111	11	n 101	101	ED	•	•		•	•	•	4	6	20	after opco Upper by	
LD dd, (nn)	$dd_{H} \leftarrow (nn + 1)$ $dd_{L} \leftarrow (nn)$	01	101 dd1	101 011	4B+	•	•	•	•	_	_	4	0	20	next.	te comes
	,	-	n.	→									}			
	737 / 1 1 1	-	n	→ 101	DD	_		_	_	_	_		C	20		
LD IX, (nn)	$\begin{array}{c} IX_H \leftarrow (nn+1) \\ IX_L \leftarrow (nn) \end{array}$		$\begin{array}{c} 011 \\ 101 \end{array}$		DD 2A	•	•	•	•	•	•	4	6	20		
	,	+-	n	-	-							}				
		+	n	→	- DD	_	_		_	_				00		
LD IY, (nn)	$IY_H \leftarrow (nn+1)$ $IY_L \leftarrow (nn)$	$\begin{vmatrix} 11\\00 \end{vmatrix}$			FD 2A	•	•	•	•	•	•	4	6	20		
	iii (iiii)	←	n	→	271											
LD (nn), HL	(nn+1) ← H	00	100	010	22	•	•	•	•	•	•	3	5	16		
	(nn) ← L	←	n n	→												
LD (nn), dd	(nn+1) ← ddH	11	101	101	ED	•	•	•	•	•	•	4	6	20		
22 (), aa	(nn) ← dd _L		dd0	011	43+		Ì						'			
		←	n n	→												
LD (nn), IX	(nn+1)←IX _H	11	011		DD	•	•	•	•	•	•	4	6	20		
LD (III), IX	(nn) + IXL		100		22	_	-	-		-	-			-		
		←	n n	→												
LD (nn), IY	(nn+1)←IYH	_	111	101	FD	•	•	•	•	•	•	4	6	20	i	
LD (IIII), 11	$(nn) \leftarrow IY_L$		100		22		•	-		-	-	1	"	10		
		←	П	→												
LD SP, HL	SP ← HL	11	n 111		F9	•	•	•	•	•	•	1	1	6		
LD SP, IX	SP ← IX	,	011		DD	-			•		•	2	2	10		
LD 31, 1X	GI · IA		111		F9		•							10		
LD SP, IY	SP ← IY		111		FD	•	•	•	•	•	•	2	2	10		
		_	111		F9		_			_			ļ			
PUSH qq	(SP − 2) ← qqı (SP − 1) ← qqн	11	qq0	101	C5+	•	•	•	•	•	•	1	3	11	qq	Reg.
PUSH IX	(SP-2)←IX _L	11	011	101	DD	•	•	•	•	•	•	2	4	15	00	BC
1 0011 111	(SP-1)←IX _H		100		E5					_					01	DE
PUSH IY	(SP − 2) ← IY _L		111		FD	•	•	•	•	•	•	2	4	15	10	HL
202	(SP-1)←IY _H	_	100		E5			_			_	-	-	1.0	11	AF
POP qq	qq _H ← (SP+1) qq _L ← (SP)	11	qq0	001	C1+	•	•	•	•	•	•	1	3	10		
POP IX	$\begin{array}{l} IX_H \leftarrow (SP+1) \\ IX_L \leftarrow (SP) \end{array}$		$\begin{array}{c} 011 \\ 100 \end{array}$		DD E1	•	•	•	•	•	•	2	4	14		
	$IY_H \leftarrow (SP+1)$	1		101	FD		_		_		•	2	4	14	1	

Notes: dd is any of the register pairs BC, DE, HL, SP. qq is any of the register pairs AF, BC, DE, HL.

(PAIR)₁, (PAIR)₂, refer to high order and low order eight bits of the register pair respectively, e.g., BC_L=C, AF_H=A. Flags: ●=unchanged, 0=reset, 1=set, X=undefined, \$\frac{1}{2}\$=set or reset according to the result of the operation

-SHARP -

Table 3 Exchange, block transfer, block search groups

	Symbolic	OP code	HEX code			Fla	gs	,		No. of	No. of	No. of	Comments
Mnemonic	operation	76 543 210	(Basic)	С	Z	P/V	S	N	Н	Bytes	M Cycles	T States	Comments
EX DE, HL	DE ↔ HL	11 101 011	EB	•	•	•	•	•	•	1	1	4	
EX AF, AF'	$AF \leftrightarrow AF'$	00 001 000	08	•	•	•	•	•	•	1	1	4	
EXX	$ \begin{array}{c c} BC \\ DE \\ HL \end{array} $ $ \begin{array}{c c} BC' \\ DE' \\ HL' \end{array} $	11 011 001	D9	•	•	•	•	•	•	1	1	4	Register bank and auxiliary register bank exchange
EX (SP), HL	$\begin{array}{c} H \leftrightarrow (SP+1) \\ L \leftrightarrow (SP) \end{array}$	11 100 011	E3	•	•	•	•	•	•	1	5	19	
EX (SP), IX	$1X_{H} \leftrightarrow (SP+1)$ $1X_{L} \leftrightarrow (SP)$	11 011 101 11 100 011	DD E3	•	•	•	•	•	•	2	6	23	
EX (SP), IY	$IY_{H} \leftrightarrow (SP+1)$ $IY_{L} \leftrightarrow (SP)$	11 111 101 11 100 011	FD E3	•	•	•	•	•	•	2	6	23	
LDI	$(DE) \leftarrow (HL)$ $DE \leftarrow DE+1$ $HL \leftarrow HL+1$ $BC \leftarrow BC-1$	11 101 101 10 100 000	ED A0	•	•	1	•	0	0	2	4	16	Load (HL) into (DE), increment the poin- ters and decrement the byte counter (BC)
LDIR	$(DE) \leftarrow (HL)$ $DE \leftarrow DE+1$ $HL \leftarrow HL+1$ $BC \leftarrow BC-1$	11 101 101 10 110 000	ED B0	•	•	0	•	0	0	2	5	21	If BC≠0
	If BC=0 end	-{				ì				2	4	16	If BC=0
LDD	(DE) ← (HL) DE ← DE−1 HL ← HL−1 BC ← BC−1	11 101 101 10 101 000	ED A8	•	•	1	•	0	0	2	4	16	
LDDR	$\begin{array}{c} BC & BC & I \\ \hline (DE) \leftarrow (HL) \\ DE \leftarrow DE-1 \\ HL \leftarrow HL-1 \\ BC \leftarrow BC-1 \end{array}$	11 101 101 10 111 000	ED B8	•	•	0	•	0	0	2	5	21	If BC≠0
	If BC=0 end	-								2	4	16	If BC=0
CPI	A - (HL)	11 101 101 10 100 001	4	•	2	1	‡	1	‡	2	4	16	
CPIR	A − (HL) HL ← HL + 1 BC ← BC − 1	11 101 101 1 10 110 001	ED B1	•	2	1	‡	1	‡	2	5	21	If BC \neq 0 and A \neq (HL)
	$ \begin{array}{c} \text{If } A = (HL) \text{ or} \\ BC = 0 \text{ end} \end{array} $	-								2	4	16	If BC=0 or A= (HL)
CPD	A − (HL) HL ← HL − BC ← BC −		1	•	2	1	‡	1	1	2	4	16	
CPDR	A − (HL) HL ← HL−	11 101 101 1 10 111 001		•	2		1	1	t	2	5	21	If BC≠0 and A≠(HL)
	$BC \leftarrow BC - BC - BC = 0$ $BC = 0 \text{ end}$	-								2	4	16	If BC=0 or A= (HL)

Note: ①P/V flag is 0 if the result of BC=0, otherwise P/V=1 ②Z flag is 1 if A = (HL), otherwise Z=0

Flags: \bullet = unchanged 0 = set, 1 =

1 = reset

 \ddagger = set or reset according to the result of the operation

SHARP -

Table 4 8-bit arithmetic and logical group

Mnemonic	Symbolic	OP code	HEX code			Fla	ags			No. of	No. of	No. of	Comm	ents
Milemonic	operation	76 543 210	(Basic)	С	Z	P/V	S	N	Н	Bytes	M Cycles	T States	Comm	
ADD A, r	$A \leftarrow A + r$	10 k r	80+	‡	‡	V	‡	0	‡	1	1	4	r	Reg.
ADD A, n	$A \leftarrow A + n$	11 k 110	C6+	‡	‡	V	‡	0	t	2	2	7	000	B
		← n →											001	c
ADD A, (HL)	$A \leftarrow A + (HL)$	10 k 110	86+	‡	‡	V	‡	0	t	1	2	7	010	D
ADD A, $(IX+d)$	$A \leftarrow A + (IX + d)$	11 011 101	DD	‡	‡	V	‡	0	‡	3	5	19	011	E
		10 k 110	86+										100	H
		← d →											101	L
ADD A, $(IY + d)$	$A \leftarrow A + (IY + d)$	11 111 101	FD	‡	‡	V	‡	0	‡	3	5	19	111	Α
		10 k 110	86+										"	1
		← d →											Mnemonic	k
ADC A, s	A ← A+s+C	4 types		‡_	‡	V	‡	0_	t		1		ADD	000
SUB s	A ← A − s	available		‡	‡	V	1	1	1				ADC	001
SBC A, s	A ← A-s-C	based on		‡	‡	V	‡	1	1	1*1	I I -	4 *1	SUB	010
AND s	$A \leftarrow A \land s$	the above ADD		0	‡	P	‡	0	1		2	7	SBC	011
OR s	$A \leftarrow A \lor s$	instruction		0	‡	P	\$	0	0	1	2	7	AND	100
XOR s	A ← A ⊕s	(see Comments)		0	‡	P	‡	0	0	3	\5	119	OR	110
CP s	A-s	(See Containents)		1	‡	V	‡	1_	‡				XOR	101
INC r	_r ← r+1	00 r ℓ	00+	•	1	V	‡_	0	1	1	1	4	CP	111
INC (HL)	(HL) ← (HL) + 1	00 110 ℓ	30+	•	‡	V	‡	0	‡	1	3	11	S=r, n , (H	
INC $(IX + d)$	(IX + d) ←	11 011 101	DD	•	‡	V	‡	0	‡	3	6	23	(IX+d),	(IY+d)
	(IX+d)+1	00 110 ℓ	30+											
		← d →		_		ļ							,,	
INC $(IY+d)$	$(IY + d) \leftarrow$	11 111 101	FD	•	‡	V	‡	0	‡	3	6	23	Mnemonic	100
	(IY+d)+1	00 110 ℓ	30+										INC	100
		← d →		ļ		<u> </u>		ļ			ļ		DEC	101
DEC m	m ← m-1	4 types		•	ţ.	V	‡	1	‡	11*2	11*2	4*2		
		available								1	3	11	m=r, (HL)	
		based on								3	6	23	(IX+d),	(IY + d)
		the above INC								$ $ $ $ $ $ $ $ $ $ $ $	6	23		
		instruction				<u> </u>					L' <u> </u>	L		

Note: V and P mean overflow and parity, respectively. • = unchanged 0 = reset

Flags:

1 = set

X = undefined

\$\$ = set or reset according to the result of the operation

₩1: depends on s.

₩2: depends on m.

Table 5 General purpose arithmetic and CPU control groups

	Symbolic	OP co	de	HEX code			Fla	ags			No. of	No. of	No. of	Comments
Mnemonic	operation	76 543	210	(Basic)	С	Z	P/V	S	N	H	Bytes	M Cycles	T States	Comments
DAA	Decimal	00 100	111	27	‡	‡	P	ţ	•	‡	. 1	1	4	Decimal adjust
	adjustment						ļ			İ				accumulator.
	(add/subtract)	1												
CPL	A ← Ā	00 101	111	2F	•	•	•	•	1	1	1	1	4	Complement
						i								accumulator
														(one's complement).
NEG	A ← 0 − A	11 101	101	ED	‡	‡	V	‡	1	1	2	2	8	Negate acc.
		01 000	100	44		İ					<u> </u>			(two's complement).
CCF	$C \leftarrow \overline{C}$	00 111	111	3F	‡	•	•	•	0	X	1 _	1	4	Complement carry flag.
SCF	C ← 1	00 110	111	37	1	•	•	•	0	0	1	1	4	Set carry flag.
NOP	No operation	00 000	000	00	•	•	•	•	•	•	11	1	4	
HALT	CPU halted	01 110	110	76	•	•	•	•	•	•	1	1	4	
DI	IFF ← 0	11 110	011	F3	•	•	•	•	•	•	1	1	4	Interrupt not enable
EI	IFF ← 1	11 111	011	FB	•	•	•	•	•	•	1	1	4	Interrupt enable
IM O	Set interrupt	11 101	101	ED	•	•	•	•	•	•	2	2	8	Set interrupt mode.
	mode 0	01 000	110	46		İ				1			<u></u>	
IM 1	Set interrupt	11 101	101	ED	•	•	•	•	•	•	2	2	8	
	mode 1	01 010	110	56										
IM 2	Set interrupt	11 101	101	ED	•	•	•	•	•	•	2	2	8	
	mode 2	01 011	110	5E					<u>L</u>					

Note: IFF indicates the interrupt enable flip-flop, CY indicates the carry flip-flop.
Flags: ●=unchanged, 0=reset, 1=set, X=undefined, \$\frac{1}{2}\$ = set or reset according to the result of the operation

Table 6 16-bit arithmetic group

	Symbolic	OP code	HEX code			Fla	ags			No. of	No. of	No. of	Com	ments
Mnemonic	operation	76 543 210	(Basic)	С	Z	P/V	S	N	Н	Bytes	M Cycles	T States		
ADD HL, ss	HL ← HL	00 ss1 001	09+	‡	•	•	•	0	Х	1	3	11		
,	+ss				1								ss	Reg.
ADC HL, ss	HL ← HL	11 101 101	ED	‡	‡	V	‡	0	Х	2	4	15	00	BC
	+ss+C	01 ssl 010	4A+										01	DE
SBC HL, ss	HL ← HL	11 101 101	ED	‡	‡	V	t	1	Х	2	4	15	10	HL
,	-ss-C	01 ss0 010	42+	l									11	SP
ADD IX, pp	$IX \leftarrow IX + pp$	11 011 101	DD	1	•	•	•	0	Х	2	4	15		
	• • •	00 pp1 001	09+		ļ								pp	Reg.
ADD IY, rr	$IY \leftarrow IY + rr$	11 111 101	FD	‡	•	•	•	0	X	2	4	15	00	BC
•		00 rr1 001	09+						İ				01	DE
INC ss	ss ← ss+1	00 ss0 011	03+	•	•	•	•	•	•	1	1	6	10	IX
INC IX	IX ← IX+1	11 011 101	DD	•	•	•	•	•	•	2	2	10	11	SP
•		00 100 011	23											-
INC IY	IY ← IY+1	11 111 101	FD	•	•	•	•	•	•	2	2	10		
		00 100 011	23										rr	Reg.
DEC ss	ss ← ss-1	00 ss1 011	0B+	•	•	•	•	•	•	1	1	6	00	ВС
DEC IX	IX ← IX-1	11 011 101	DD	•	•	•	•	•	•	2	2	10	01	DE
		00 101 011	2B			ļ		İ	1				10	IY
DEC IY	IY ← IY − 1	11 111 101	FD	•	•	•	•	•	•	2	2	10	11	SP
		00 101 011	2B											

Note: ss is any of the register pairs BC, DE, HL, SP.
pp is any of the register pairs BC, DE, IX, SP.
rr is any of the register pairs BC, DE, IY, SP.
Flags:

=unchanged, 0=reset, 1=set, X=undefinede, \$\frac{1}{2}\$=set or reset according to the result of the operation

Table 7 Rotate and shift groups

	Symbolic	OP code	HEX code			Fla	ags			No. of	No. of	No. of	
Мпетопіс	operation	76 543 210	(Basic)	С	Z	P/V	S	N	Н	Bytes	M Cycles	T States	Comments
RLCA	7 — 0 A	00 000 111	07	ţ	•	•	•	0	0	1	1	4	Rotate left circular accumulator.
RLA	7 - 0 A	00 010 111	17	ţ	•	•	•	0	0	1	1	4	Rotate left accumulator.
RRCA	7 — 0 — CY	00 001 111	0F	ţ	•	•	•	0	0	1	1	4	Rotate right circular accumulator.
RRA	- 7 → 0 - CY	00 011 111	1F	ţ	•	•	•	0	0	1	1	4	Rotate right accumulator.
RLCr		11 001 011 00 k r	CB 00+	‡	‡	P	‡	0	0	2	2	8	Rotate left circular register r.
RLC (HL)		11 001 011 00 k 110	CB 06+	‡	‡	P	‡	0	0	2	4	15	r Reg.
RLC (IX+d)	r, (HL), (IX+d), (IY+d)	11 011 101 11 001 011 ← d → 00 k 110	DD CB	‡	‡	P	‡	0	0	4	6	23	000 B 001 C 010 D 011 E
RLC (IY+d)		11 111 101 11 001 011 ← d → 00 k 110	FD CB	‡	‡	Р	‡	0	0	4	6	23	100 H 101 L 111 A
RL m	C-7-0m			ţ	‡	Р	t	0	0				Mnemonic k
RRC m	7 0 C			‡	‡	P	ŧ	0	0			;	RLC 000 RRC 001 RL 010
RR m	7 0 C			‡	‡	P	ŧ	0	0	2*	2* 4	8* 15	RR 011 SLA 100
SLA m	7 - 0 -			‡	t	Р	ŧ	0	0	44	6	23 23	SRA 101 SRL 111
SRA m	7 0 C			‡	‡	Р	‡	0	0				m=r, (HL), (IX+d), (IY+d)
SRL m	+7 → 0 -C			#	‡	P	t ,	0	0				*depends on m.
RLD	A7130 7130	11 101 101 01 101 111	ED 6F	•	‡	P	ţ	0	0	2	5	18	Rotate digit left and right between the accumulator and location (HL).
RRD	A7 03 0 7 43 0 (HL)	11 101 101 01 100 111	ED 67	•	‡	Р	ţ	0	0	2	5	18	The content of the upper half of the accumulator is unaffected.

 $Flags: \bullet = unchanged$

0 = reset

1=set ×=undefined

‡ = set or reset according to the result of the operation

SHARP .

Table 8 Bit set, reset and test group

	Symbolic	OP co	de	HEX code			Fla	igs			No. of	No. of	No. of	Comr	nents
Mnemonic	operation_	76 543	210	(Basic)	С	Z	P/V	S	N	Н	Bytes	M Cycles	T States		
BIT b, r	Z ← řь	11 001	011	СВ	•	‡	X	X	0	1	2	2	8	r	Reg.
		01 b	r	40+						L				000	В
BIT b, (HL)	$Z \leftarrow (\overline{HL})_b$	11 001	011	CB	•	‡	X	X	0	1	2	3	12	001	С
		01 b	110	46+			<u> </u>							010	D
BIT b, (IX+d)	$Z \leftarrow (\overline{IX+d})_b$	1		DD	•	‡	X	X	0	1	4	5	20	011	E
		11 001	011	CB		Į								100	Н
		← d	-			İ				ĺ		ļ		101	L
		01 b	110	46+		L_	-		<u></u>			<u> </u>		111	Α
BIT b, (IY+d)	$Z \leftarrow (IY + d)_b$			FD	•	‡	X	X	0	1	4	5	20	,	
		11 001	011	CB							Į			b	Bit Tested
		← d	→								1			000	0
		01 b	110	46+		ļ	<u> </u>	L .		<u> </u>				001	1
SET b, r	$r_b \leftarrow 1$	11 001	011	СВ	•	•	•	•	•	•	2	2	8	010	2
		a b	r			<u> </u>	_			<u> </u>				011	3
SET b, (HL)	$(HL)_b \leftarrow 1$	11 001		СВ	•	•	•	•	•	•	2	4	15	100	4
		a b	110	06+		_	<u> </u>			<u> </u>	-			101	5
SET b, $(IX+d)$	$(IX+d)_b \leftarrow 1$	1		DD	•	•	•	•	•	•	4	6	23	110	6
	•	11 001	011	CB								ļ	ļ	111	7
		← d	-				1							'	
		a b	110	06+		<u> </u>	ļ		_	ļ. <u> </u>	<u> </u>	-			1
SET b, (IY+d)	$(IY+d)_b \leftarrow 1$	11 111		FD	•	•	•	•	•	•	4	6	23	Mnemonio	+
		11 001	011	СВ		ļ				ļ				SET	11
		← d	-											RES	10
		a b	110	06+		ļ			_	<u> </u>					
											2*	2*	8*		
RES b, m	m _b ← 0										2	4	15	m=r, (HI	**
RES U, III	110 · O										4	6	23	(IX+d), (
											4	6	23	*depend	is on m

Note: The notation $m_{\tilde{b}}$ indicates bit $b\ (0\ to\ 7)$ or location m_{\star}

 $Flags: \bullet = unchanged$ 0=reset 1=set

X = undefined

‡ = set or reset according to the result of the operation

Table 9 Jump group

Mnemonic	Symbolic		OP co	de	HEX code			Fl	ags			No. of	No. of	No. of	C	nments
	operation	76	543	210	(Basic)	С	Z	P/V	S	N	Н	Bytes	M Cycles	T States	Соп	iments
JP nn	PC ← nn	11	000	011	C3	•	•	•	•	•	•	3	3	10		Condition
		-	n	-											<u>cc</u>	NZ
		-	n	-											001	Z
JP cc, nn	If condition cc	11	cc	010	C2+	•	•	•	•	•	•	3	3	10	010	NC NC
	is true PC ← nn,	-	n												010	C
	otherwise con-	←	n	\rightarrow								3	3	10	100	PO
	tinue														101	PE
JR e	PC ← PC+e	00	011		18	•	•	•	•	•	•	2	3	12	110	P
		-	e-2	-											111	M
JR C, e	If C=1	00	111	000	38	•	•	•	•	•	•	2	3	12	111	IVI
	PC ← PC+e	-	e-2	-											NZ: non	-zero
	If $C=0$											2	2	7	Z : zer	0
	continue					L		ļ							C : car	ry
JR NC, e	If $C=0$		110		30	•	•	•	•	•	•	2	3	12	PO: par	ity odd
	PC ← PC+e	-	e-2	-											PE: par	ity even
	If $C=1$											2	2	7	P : sigr	positive
	continue							<u> </u>							M:sign	negative
JR Z, e	. If $Z=1$	00	101	000	28	•	•	•	•	•	•	2	3	12		
	PC ← PC+e	-	e-2	→												
	If $Z=0$											2	2	7		
	continue															
JR NZ, e	If $Z=0$	00	100	000	20	•	•	•	•	•	•	2	3	12		
	PC ← PC+e	-	e-2	-												
	If $Z=1$										1	2	2	7		
	continue															
JP (HL)	PC ← HL	_	101		E9	•	•	•	•	•	•	1	1	4		
JP (IX)	PC ← IX	l	011		DD	•	•	•	•	•	•	2	2	8		
		_	101		E9											
JP (IY)	PC ← IY	l .	111		FD	•	•	•	•	•	•	2	2	8		
		-	101		E9						L					
DJNZ, e	If B ← B-1	00	010	000	10	•	•	•	•	•	•	2	3	13		
	B≠0	←	e-2	→												
	PC ← PC+1															
	If B=0											2	2	8		
	continue	L					L	L								

Note: e represents the extension in the relative addressing mode.
e is a signed two's complement number in the range <-126, 129>
e -2 in the opcode provides an effective address of pc+e as PC is incremented by 2 prior to the addition of e.

e itself is obtained from opcode position.

Flags: $\bullet = unchanged$ 0 = reset

1 = set

X = undefined

‡ = set or reset according to the result of the operation

Table 10 Call and return group

	Symbolic	(OP co	de	HEX code			Fl	ags			No. of	No. of	No. of	Comm	ients
Mnemonic	operation	76	543	210	(Basic)	С	Z	P/V	S	N	Н	Bytes	M Cycles	T States		ients
CALL nn	(SP-1) ← PC _H	11	001	101	CD	•	•	•	•	•	•	3	5	17	cc	Condition
	(SP-2) ← PC ₁	-	n	-											000	NZ
	PC ← nn	<u> </u>	n	-				ļ							001	Z
CALL cc, nn	If condition cc is	11	cc	100	C4+	•	•	•	•	•	•	3	5	17	010	NC
	false continue,	-	n	\rightarrow											011	С
	otherwise same	•	n	→								3	3	10	100	PO
	as CALL nn										ļ				101	PE
RET	$PC_L \leftarrow (SP)$	11	001	001	C9	•	•	•	•	•	•	1	3	10	110	P
	$PC_H \leftarrow (SP+1)$							<u> </u>							111	M
RET cc	If condition cc is	11	cc	000	C0+	•	•	•	•	•	•	1	3	11		
	false continue,															1
	otherwise same											1	1	5	r	p
	as RET										<u> </u>				000	00н
RETI	Return from	11	101	101	ED	•	•	•	•	•	•	2	4	14	001	08н
	interrupt	01	001	101	4D						ļ			ļ	010	10н
RETN	Return from	11	101	101	ED	•	•	•	•	•	•	2	4	14	011	18н
	non-maskable	01	000	101	45										100	20н
	interrupt														101	28н
RST p	(SP-1) ← PC _H	11	t	111	C7+	•	•	•	•	•	•	1	3	11	110	30н
	$(SP-2) \leftarrow PCL$														111	38н
	$PC_H \leftarrow 0$				İ											
	PCι ← p							<u> </u>			L					

Flags: ● = unchanged

0 = reset

1 = set

X=undefined \$\delta = \text{set or reset according to the result of the operation}\$

Table 11 Input and output group

	Symbolic	OP coo	le	HEX code			Fla	ags			No. of	No. of	No. of	C	
Mnemonic	operation	76 543	_	(Basic)	С	Z	P/V	S	N	Н	Bytes	M Cycles	T States	Com	ments
IN A, (n)	A ← (n)	11 011	011	DB	•	•	•	•	•	•	2	3	11	$n \rightarrow A_0$	A ₇
, ,		← n	→											$Acc \rightarrow A$	8-A ₁₅
IN r, (C)	r ← (C)	11 101	101	ED	•	‡	P	‡	0	‡	2	3	12		
		01 r	000	40+											
INI	(HL) ← (C)	11 101	101	ED	X	‡	X	X	1	Х	2	4	16	$C \rightarrow A_0$	A7
	B ← B-1	10 100	010	A2		1			ĺ					$B \rightarrow A_8$	A_{15}
	HL ← HL+1														
INIR	(HL) ← (C)	11 101	101	ED	X	1	X	X	1	Х	- 2	5	21	r	Reg.
	B ← B-1	10 110	010	B2		2						(If $B \neq 0$)		000	В
	HL ← HL+1						l				2	4	16	001	c
	Repeat until				İ						Ì	(If B=0)		010	D
	B=0													011	E
IND	(HL) ← (C)	11 101	101	ED	Х	‡	Х	Х	1	X	2	4	16	100	Н
	B ← B−1	10 101	010	AA		1					ļ	Ì		101	L
	HL ← HL-1										<u></u>			111	A
INDR	(HL) ← (C)	11 101	101	ED	X	1	X	X	1	Х	2	5	21	***	
	B ← B-1	10 111	010	BA								$(If B \neq 0)$			
	. HL ← HL-1					2					2	4	16	1	
	Repeat until				ļ			ļ				(If B=0)			
	B=0														
OUT (n), A	(n) ← A	11 010	011	D3	•	•	•	•	•	•	2	3	11	n → (A-I	3US) ₀₋₇
		← n	→											$Acc \rightarrow (A$	\-BUS) ₈₋₁₅
OUT (C), r	(C) ← r	11 101	101	ED	•	•	•	•	•	•	2	3	12		
		01 r	001	41+						}					
OUTI	(C) ← (HL)	11 101	101	ED	Х	‡	X	X	1	X	2	4	16	$C \rightarrow A_0$	·A ₇
	B ← B-1	10 100	011	А3		1							1		
	HL ← HL+1														
OTIR	(C) ← (HL)	11 101	101	ED	X	1	X	X	1	X	2	5	21	$B \rightarrow A_8$	·A ₁₅
	B ← B−1	10 110	011	В3								(If B≠0)		
	HL ← HL+1					2					2	4	16		
	Repeat until											(If B=0)			
	B=0			_											
OUTD	(C) ← (HL)	11 101	101	ED	X	‡	X	X	1	X	2	4	16		
	B ← B-1	10 101	011	AB		1									
	HL ← HL-1														
OTDR	(C) ← (HL)	11 101	101	ED	X	1	X	X	1	X	2	5	21		
	B ← B−1	10 111	011	BB								(If B≠0)			
	HL ← HL-1					2					2	4	16		
	Repeat until											(If B=0))		
	B=0														

Note: \bigcirc If the result of B-1 is zero the Z flag is set, otherwise it is reset.

②Z flag is set upon instruction completion only.

Flags: ●=unchanged

0 = reset

1 = set

X = undefined

‡ = set or reset according to the result of the operation

SHARP -