SN54196, SN54197, SN54LS196, SN54LS197, SN54S196, SN54S197, SN74196, SN74197, SN74LS196, SN74LS197, SN74S196, SN74S197, SN74S1

SDLS077

OCTOBER 1976-REVISED MARCH 1988

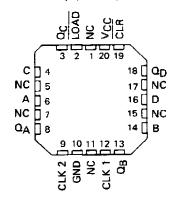
- Performs BCD, Bi-Quinary, or Binary Counting
- Fully Programmable
- Fully Independent Clear Input
- Input Clamping Diodes Simplify System Design
- Output Q_A Maintains Full Fan-out Capability In Addition to Driving Clock-2 Input

TYPES	GUARAI COUNT FRI		TYPICAL
	CLOCK 1	CLOCK 2	POWER DISSIPATION
'196, '197	0-50 MHz	0-25 MHz	240 mW
'LS196, 'LS197	0-30 MHz	0-15 MHz	80 mW
'\$196, 'S197	0-100 MHz	0-50 MHz	375 mW

description

These high-speed monolithic counters consist of four d-c coupled, master-slave flip-flops, which are internally interconnected to provide either a divide-by-two and a divide-by-five counter ('196, 'LS196, 'S196) or a divide-by-two and a divide-by-eight counter ('197, 'LS197, 'S197). These four counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independent of the state of the clocks.

During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse. These counters feature a direct clear which when taken low sets all outputs low regardless of the states of the clocks.


These counters may also be used as 4-bit latches by using the count/load input as the strobe and entering data at the data inputs. The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive.

All inputs are diode-clamped to minimize transmission-line effects and simplify system design. These circuits are compatible with most TTL logic families. Series 54, 54LS, and 54S circuits are characterized for operation over the full military temperature range of -55° C to 125°C; Series 74, 74LS, and 74S circuits are characterized for operation from 0°C to 70°C.

SN54196, SN54LS196, SN54S196, SN54197, SN54LS197, SN64S197...J OR W PACKAGE SN74196, SN74197...N PACKAGE SN74LS196, SN74S196, SN74LS197, SN74S197...D OR N PACKAGE (TOP VIEW)

LOAD I	U14D VCC
$\mathbf{a}_{\mathbf{C}} \square^2$	13 CLR
C 🖂 3	12 QD
A □4	ם 🕽 וי
Ω⊿ □5	10ДВ
CLK 2 6	эД Ов
GND 🔯 7	8 CLK 1

\$N54L\$196, \$N54\$196, \$N54L\$197, \$N54\$197...FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbols[†]

'197, 'LS197, 'S197 '196, 'LS196, 'S196 LOAD (1) CLR (13) CLR 1131 CT - 0 CLK1 (8) (8) DIV2 CLK1 A (4) A (4) QA 10 10 CLK2 (6) (6) (9) B (10) -Qa -QR (10) (2) 121 -Qc (3) -ac an. ·Ωn (11)

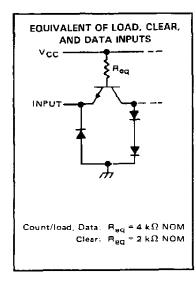
Pin numbers shown are for D, J, N, and W packages.

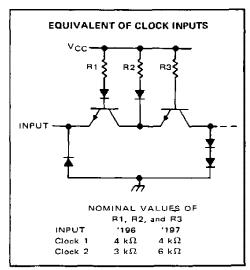
[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

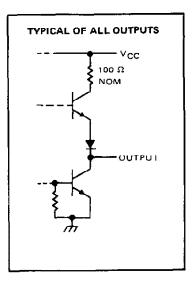
SN54196, SN54197, SN54LS196, SN54LS197, SN54S196, SN54S197, SN74196, SN74197, SN74LS196, SN74LS197, SN74S196, SN74S197, SN74S1

typical count configurations

'196, 'LS196, and 'S196 typical count configurations and function tables are the same as those for '176.


'197, 'LS197, and 'S197 typical count configurations and function tables are the same as those for '177.


logic diagrams


'196, 'L\$196, and '\$196 logic diagrams are the same as those for '176.

'197, 'LS197, and 'S197 logic diagrams are the same as those for '177.

schematics of inputs and outputs

SN54196, SN54197, SN74196, SN74197 50-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .									-							7 V
Input voltage															. 6	5.5 V
Interemitter voltage (see Note 2) .																5.5 V
Operating free-air temperature range:	SN54196,	SN5	4197	' Cire	uits							-5	i5°	C t	o 1	25°C
	SN74196,															
Storage temperature range , .																

NOTES: 1. Voltage values are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter transistor. For this circuit, this rating applies between the Clear and Load inputs.

recommended operating conditions

		SN54	4196, SN	54197	SN74	196, SN7	4197	
		MIN	NOM	MAX	MIN	NOM	MAX	רואט
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				-800			-800	μА
Low-level output current, IOL				16			16	mA
0	Clock-1 input	0		50	0		50	
Count frequency	Clock-2 input	0		25	0		25	MH:
	Clock-1 input	10			10			
B. C. C. C.	Clock-2 input	20			20			1
Pulse width, t _w	Clear	15			15		•	ns
	Load	20			20			
lance baddelen a desa Nova 21	High-level data	tw(load)			tw(load)			
Input hold time, th (see Nate 3)	Low-level data	t _{w(load)}			tw(foad)			ns
January and January 1	High-level data	10			10			
Input setup time, t _{su} (see Note 3)	Low-level data	15			15			ns
Count enable time, ten (see Note 4)		20			20			ns
Operating free-air temperature, TA		-55		125	0		70	,°C

- NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.
 - Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which
 interval the count/load and clear inputs must both be high to ensure counting.

SN54196, SN54197, SN74196, SN74197 50-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	1	TEST CONDITIO	NICT	SN54	196, SN	74196	SN54	197, SN	74197	
	TATIONIL 121		TEST CONDITIO	149,	MIN	TYP‡	MAX	MIN	TYP‡	MAX	רומט
v_{IH}	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN, I _I = -12	пА			-1.5	1		-1.5	V
νон	High-level output voltage	e	V _{CC} = MIN, V _{IH} = 2 V V _{IL} = 0.8 V, I _{OH} = -8		2,4	3.4		2.4	3.4		v
VoL	Low-level output voltage	!	V _{CC} = MIN, V _{1H} = 2 \ V _{1L} = 0.8 V, I _{OL} = 16			0.2	0.4		0.2	0.4	V
Ч	Input current at maximu	m input voltage	V _{CC} = MAX, V ₁ = 5.5 \	/	1		1			1	mΑ
		Data, Load					40	 		40	
lін	High-level input current	Clear, clock 1	VCC = MAX, VI = 2.4 \	/			80			80	μА
		Clack 2					120			80	
	_	Data, Load					-1.6		****	-1.6	
1	Law law line in a contract	Clear],, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-3.2			-3.2	1
ΊL	Low-level input current	Clock 1	VCC = MAX, VI = 0.4 \	,			-4.8			-4.8	mΑ
		Clock 2	7				-6.4			-3.2	ĺ
laa	Short-circuit output curr	ant 8	V	SN54'	-20		-57	-20		-57	
os	Short-circuit output curr	ents	VCC = MAX	SN74'	-18		57	-18		-57	mΑ
Icc_	Supply current		VCC = MAX, See Note	5		48	59		48	59	mΑ

NOTE 5: ICC is measured with all inputs grounded and all outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER#	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	ı	N5419 N7419		1	N5419		UNIT
	(1141 017)	10011 017		MIN	TYP	MAX	MIN	TYP	MAX	1
fmax	Clock 1	QA		50	70		50	70		MHz
tPLH	Clock 1	Q _A			7	12		7	12	
^t PHL	GIOCK !	<u> </u>			10	15		10	15	ns
₹PLH	Clock 2	ΩB			12	18		12	18	
^t PHL	GIOLK 2	GB			14	21		14	21	ns
tPLH .	Clock 2	00			24	36		24	36	
tPHL	CIOCK 2	Q _C	$C_L = 15 \text{pF},$		28	42		28	42	ns
†PLH	Clock 2	QD	$R_L = 400 \Omega$		14	21		36	54	
^t PHL	Clock 2	4 <u>0</u>	See Note 6		12	18		42	63	ns
tpLH	A, B, C, D	α _A , α _B , α _C , α _D			16	24		16	24	
t _{PHL}	7, 5, 0, 5	αχ, αβ, αC, αδ			25	38		25	38	กร
†PLH	Load	Any			22	33		22	33	
tPHL	2080	Evily .			24	36		24	36	ns
^t PHL	Clear	Any			25	37		25	37	ns

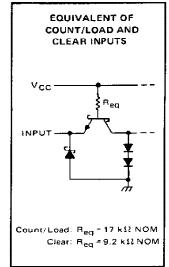
 $^{\#}f_{\text{max}} = \text{maximum count frequency.}$

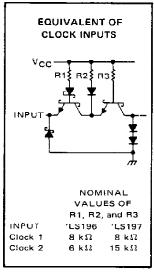
NOTE 6: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176, '177 except that testing f_{max}, V_{IL} = 0.3 V.

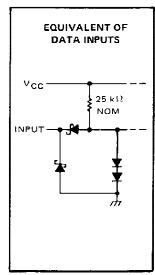
[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

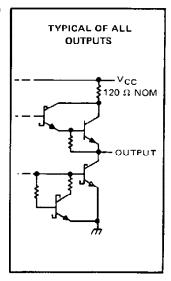
[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

[§]Not more than one output should be shorted at a time.


¹⁰A outputs are tested at I_{OL} = 16 mA plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54/74 loads.


tp_H = propagation delay time, low-to-high-level output.


tpHL ≡ propagation delay time, high-to-low-level output.


SN54LS196, SN54LS197, SN74LS196, SN74LS197 30-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			7 V
Input voltage			5.5 V
Operating free-air temperature range:	SN54LS196, SN54LS197	Circuits	-55°C to 125°C
•	SN74LS196, SN74LS197	Circuits	0°C to 70°C
Storage temperature range			-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54LS1	96, SN5	4LS197	SN74LS1	96, SN7	4LS197	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
IOH	High-level output current			-	-400			-400	μА
loL	Low-level output current				4			В	mΑ
	Count frequency	Clock-1 input	0		30	0		30	
	Count frequency	Clock-2 input	0		15	0		15	MHz
		Clock-1 input	20			20			
	Pulse width	Clock-2 input	30			30			
t _w	Fulse Width	Clear	15			15			ns
		Load	20			20	•		
	Input hold time, (see Note 3)	High-level data	tw(loai	d)		tw(loa	d)		
th	imput noid time, isee Note 3/	Low-level data	tw(load	1)		tw(loa	d١		пs
	1	High-level data	10		*****	10			
^t su	Input setup time, (see Note 3)	Low-level data	15			15			ns
		Clock 1	30			30		1	
[†] enable	Count enable time, (see Note 4)	Clock 2	50	•		50			ns
Тд	Operating free-air temperature	•	55		125	0		70	°C

NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.

4. Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

SN54LS196, SN54LS197, SN74LS196, SN74LS197 30-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					·	Sħ	154LS1	96	SM	174LS1	96	
	PARAMI	ETER	TES	ST CONDITIONS	S†	Sħ	154LS1	97	Sh	174LS1	97	UNIT
						MIN	TYP‡	MAX	MIN	TYP‡	MAX	
Vitt	High-level input v	oltage				2	·		_ 2			٧
VIL	Low-level input v	oitage	-					0.7			8.0	٧
v_{IK}	Input clamp volta	age	V _{CC} = MIN,	I _I = -18 mA				-1.5			−1.5	٧
VOH	High-level output	voltage	V _{CC} = MIN,			2.5	3.4		2,7	3,4		v
	· · · · · · · · · · · · · · · · · · ·			بر _{OH} = -400 س								
Voi	Low-level output	voltage	VCC = MIN,		IOL = 4 mA		0,25	0.4		0.25	0.4	l v
	·	-	VIL = VIL max		IOL = 8 mA [©]					0.35	0.5	
	Input current	Data, Load	!					0.1			0.1	
l ₁	at maximum	Clear, clock 1	VCC - MAX,	Vi = 5.5 V				0,2			0.2	mΑ
- 1	input voltage	Clock 2 of 'LS196	1.00	.,		_		0.4			0.4	
		Clock 2 of 'LS197						0.2			0.2	
		Data, Load						20			20	
1	High-level	Clear, clock 1	V _{CC} = MAX,	V ₁ = 2.7.V				40			40	μΑ
ΉН	input current	Clock 2 of 'LS196	VCC - IWAA,	V] - 2.7 V				80			80	μ
		Clock 2 of 'LS197						40			40	
		Data, Load						-0.4			-0.4	
	Low-level	Clear						-0.8			-0.8	
HL	Input current	Clock 1	VCC = MAX.	V _j = 0.4 V				-2.4			-2.4	mΑ
	inpat carrent	Clock 2 of 'LS196						-2.8			-2.8	
		Clock 2 of 'LS197					-	-1.3			-1.3	
los	Short-circuit outp	out current§	VCC = MAX			-20		-100	-20	, and the second	-100	mΑ
Icc	Supply current		V _{CC} = MAX,	See Note 5			16	27		16	27	mΑ

 $^{^\}dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 5. I_{CC} is measured with all inputs grounded and all outputs open.

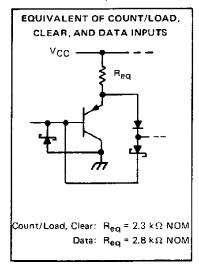
switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

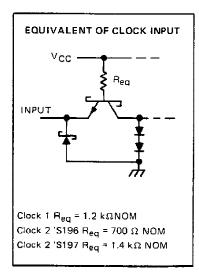
PARAMETER#	FROM (INPUT)	то (оитрит)	TEST CONDITIONS	·	154LS1 174LS1		I	154 LS1 174 LS1		דומט
	(HVPO1)	(0017017		MIN	TYP	MAX	MIN	TYP	MAX	1
f _{max}	Clock 1	Q _A		30	40		30	40		MHz
t P LH	Clock 1	QA			8	15		8	15	ns
†PHL	CIOCK	υд			13	20		14	21	
^t PLH	Clock 2	u _B			16	24		12	19	ns
tPHL.	01002				22	33		23	35	113
[†] PLH	Clock 2	0-	C _L = 15 pF,		38	57		34	51	п\$
^t PHL	CIOCK 2	QC			41	62		42	63	113
[†] PLH	Clock 2	0-	R _L = 2 kΩ, See Note 6		12	18		55	78	
^t PH↓	CIOCK 2	□ QD	See Note 6		30	45		63	95	ns
ФLH					20	30		18	27	
tPHL	A, B, C, D	QA, QB, QC QD			29	44		29	44	ns
^t PLH	Load	Any			27	41		26	39	
tPHL	LOAG	Any			30	45		30	45	ns.
tpH L	Clear	Any			34	51		34	51	ns

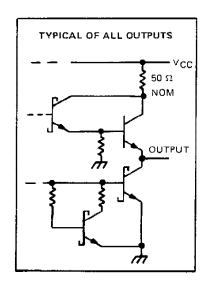
[#]f_{max} ≡ maximum count frequency.

NOTE 6: Load circuit, input conditions, and voltage waveforms are the same as those shown for the '176, '177 except that $t_f \le 15$ ns, $t_f \le 6$ ns, and $V_{ref} = 1.3$ V (as opposed to 1.5 V).

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$.


^{\$}Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.


^{*} QA outputs are tested at specified IQL plus the limit value of I_|L for the clock-2 input. This permits driving the clock-2 input while maintaining full fan-out capability.


tp_{LH} ≡ propagation delay time, low-to-high-level output, tp_{HL} ≡ propagation delay time, high-to-low-level output.

SN54S196, SN54S197, SN74S196, SN74S197 100-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)																			7 V
Input voltage																			
Operating free-air temperature range	: SN	N54	519	6,	SNS	54S	197	' Cir	cuit	5						-55	°C to	12	25°C
	SI	V74 3	S19	6,	SN:	74S	197	' Cir	cuit	5							o°C	to 7	O°C
Storage temperature range											-					65	°C to	15	o°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54	S196, SN5	4S197	SN745	S196, SN7	4\$197	דומט
		MIN	MOM	MAX	MIN	NOM	MAX	וואט ך
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-1			-1	mA
Low-level output current, IOL				20			20	mA
Clark former	Clock-1 input	0		100	0		100	MHz
Clock frequency	Clock-2 input	0		50	0		50	IVITIZ
	Clock-1 input	5			5			
8.1	Clack-2 input	10			10]
Pulse width, t _W	Clear	30			30		•	ns
	Load	5			5			1
leant bald disease of the News 20	High-level data	31			31			
Input hold time, th (see Note 3)	Low-level data	31			31			ns
January Simo & Jana Nata 2)	High-level data	61			61			
Input setup time, t _{su} (see Note 3)	Low-level data	61			61		-	ns
Count enable time, ten (see Note 4)		12			12			ns
Operating free-air temperature, TA		-55		125	0		70	°c

- NOTES: 3. Setup and hold times are with respect to the falling edge of the load input.
 - 4. Minimum count enable time is the interval immediately preceding the negative-going edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.

SN54S196, SN54S197, SN74S196, SN74S197 100-MHz PRESETTABLE DECADE OR BINARY COUNTERS/LATCHES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted).

PARAMETER		TEST CONDITIONS †				SN54S196, SN74S196			SN54S197, SN74S197			UNIT	
						MIN	TYP‡	MAX	MIN	MIN TYP# MAX		1	
V _{fH}						2			2			V	
VIL								0.8			0.8	V	
Vik		V _{CC} = MIN,	I _I = -18 mA					-1.2			-1.2	V	
Voн		VCC = MIN,	V _{IH} = 2 V,		548	2.5	3.4		2.5	3.4		1,,	
νон	•	VIL = 0.8 V.	10H = -1 mA		745	2.7	3.4	.4	2.7	3.4		V	
VOL		V _{CC} = MIN, I _{OL} = 20 mA ¢	V _{IH} = 2 V,	V _{IL} = ().8 V.			0.5			0.5	٧	
1 ₁		V _{CC} = MAX,	V _I ≈ 5.5 V			1		1			1	mA	
ЧН	Clock 1, clock 2	VCC = MAX,	V ₁ = 2.7 V					150			150		
·11 H	All other inputs		* 2.7 ¥					50			50	μΑ	
L.	Data, Load Clear	V = 144×	V 0 EV					-0.75		-	- 0.75	mΑ	
IIL	Clock 1	V _{CC} = MAX,	V - 0.5 V					-8			8	mΑ	
	Clock 2							-10			-6	mΑ	
1 ₀₅ §	* * * *	V _{CC} = MAX				-30		-110	-30		-110	mA	
lcc		V _{CC} = MAX, See Note		54S			75	110		75	110	A	
.00		VCC MAX,			74\$		75	5 120		75	120	mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

NOTE 5: ICC is measured with all input grounded and all outputs open.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER#	(FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	SN54S196, SN74S196			SN54S197, SN74S197			UNIT			
_				MIN	TYP	MAX	MIN	TYP	MAX	1			
fmax	Clock 1	a _A		100	140		100	140	٠	MHz			
^t PLH	Clack 1	QA			5	10		5	10	ns			
^t PHL	CIOCK			[6	10		6	10				
[†] P L H	Clock 2	QΒ			5	10		5	10				
^t PHL	GIOCK 2				8	12		8	12				
^t PLH	Clock 2	o _C			12	18		12	18	ns			
^t PHL	CIOCK Z		R_L = 280 Ω , C_L = 15 pF,		16	24		15	22				
tPLH	Clock 2	a _D	See Note 7		5	10		18	27				
^t PHL	CIOCK 2				8	12		22	33				
[†] PLH	A B C D	ARCD	ARCD	A,B,C,D	a_A, a_B, a_C, a_D			7	12		7	12	ns
[†] PHL	A,0,0,0	ANABIACIAN			12	18		12	18	T '''			
^t PLH	Load	Any			10	18	i	10	18	ns			
^t PHL	wau			12 18		18		12	18	115			
^t PHL	Clear	Any			26	37		26	37	ns			

 $^{\#}f_{max} = maximum count frequency.$

NOTE 7: Load circuit, input conditions, and voltage waveforms are the same as those shown in Section 1.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

¶ Q_A outputs are tested at $I_{OL} = 20 \text{ mA}$ plus the limit value of I_{IL} for the clock-2 input. This permits driving the clock-2 input while fanning out to 10 Series 54S/74S loads.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

 $t_{PLH} \equiv propagation delay time, low-to-high-level output.$

tpHL = propagation delay time, high-to-low-level output.

PACKAGE OPTION ADDENDUM

www.ti.com 15-Oct-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins I	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)
7601501CA	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
7601501DA	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
SN54196J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SN54197J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SN54LS197J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74196N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74197N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS196D	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
SN74LS196DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
SN74LS196N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74LS197D	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
SN74LS197J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS197N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74S196N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SN74S197N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI
SNJ54196J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SNJ54197J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SNJ54197W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
SNJ54LS197FK	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
SNJ54LS197J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ54LS197W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

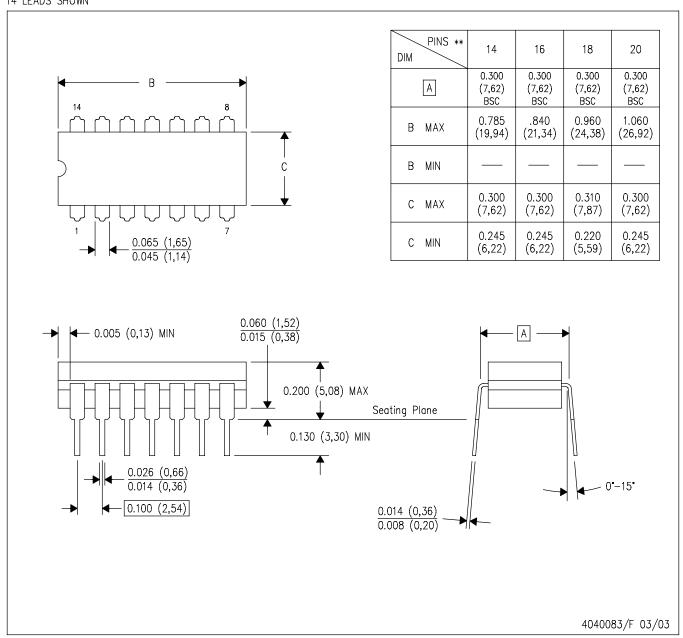
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

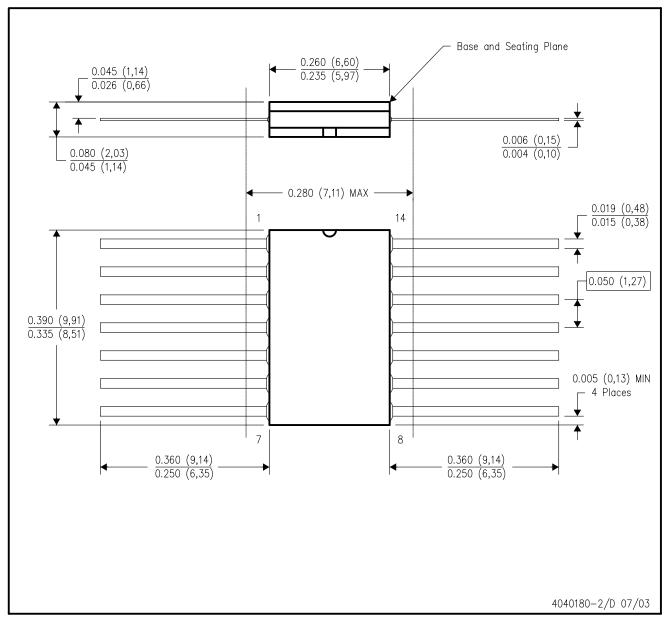
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited


PACKAGE OPTION ADDENDUM

www.ti.com 15-Oct-2009

information may not be available for release.

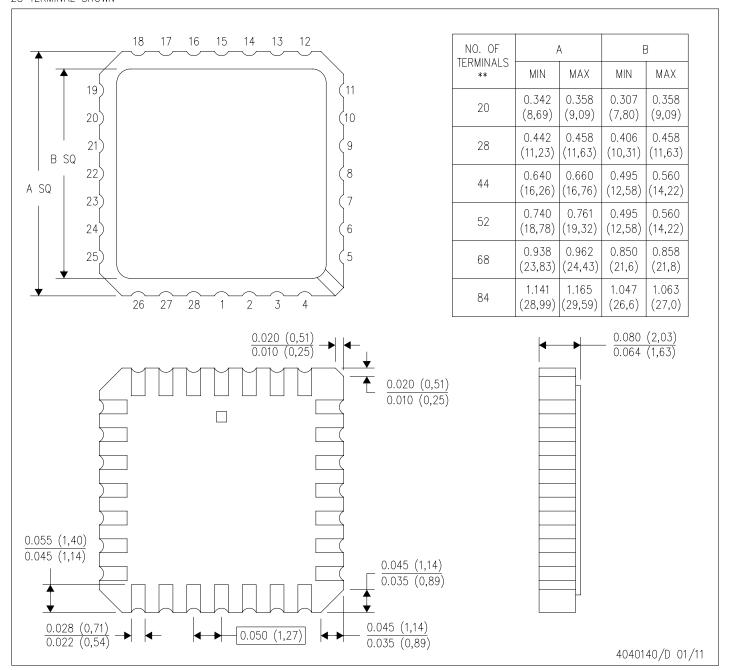
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

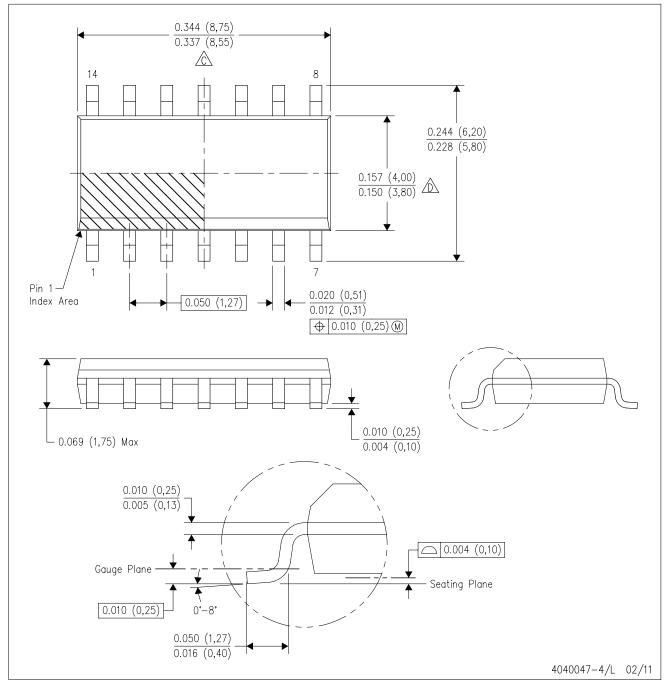
CERAMIC DUAL FLATPACK


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated

e2e.ti.com