

4チャンネル・デジタル・ アイソレータ

ADuM1400/ADuM1401/ADuM1402

特長

低消費電力動作

5V動作:

0~2Mbpsでチャンネル当たり最大1.0mA 10Mbpsでチャンネル当たり最大3.5mA 90Mbpsでチャンネル当たり最大31mA 3V動作:

0~2Mbpsでチャンネル当たり最大0.7mA 10Mbpsでチャンネル当たり最大2.1mA 90Mbpsでチャンネル当たり最大20mA

双方向通信

3V/5Vレベル変換 高温動作:105℃

高速データレート: DC~100Mbps (NRZ)

高精度なタイミング特性: パルス幅歪み:最大2ns

チャンネル間マッチング:最大2ns 高コモン・モード過渡耐圧:25kV/ μ s以上

出力イネーブル機能

ワイドの16ピンSOICパッケージ、鉛フリー製品あり

安全規格認定

UL認定:2500V rms、1分間のUL 1577規格に準拠 CSA component acceptance notice #5Aに準拠 VDE適合性認定

DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01

DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000

V_{IORM}=560V peak

アプリケーション

汎用のマルチチャンネル・アイソレーション SPI®インターフェース/データ・コンバータのアイソレーション RS-232/422/485トランシーバ

工業用フィールド・バスのアイソレーション

概要

ADuM140xは、アナログ・デバイセズの*i*Coupler®技術に基づく4 チャンネルのデジタル・アイソレータです。高速CMOS技術と空 気コアを使ったモノリシック・トランス技術の組み合わせにより、ADuM140xはフォトカプラ・デバイスなどの置換品に比べて、 格段に優れた性能特性を提供します。

iCouplerデバイスはLEDと光ダイオードを使用しないので、一般にフォトカプラに起因する設計の難しさが回避されます。一般的なフォトカプラにとっては、不確かな電流交換比や非直線的な伝達関数、温度や寿命の影響などが問題でしたが、iCouplerのシンプルなデジタル・インターフェースや安定した性能特性によって、こうした問題点は解消されています。これらのiCoupler製品では、外付けドライバやその他のディスクリート部品は不要です。さらに、iCouplerデバイスは信号データレートが同程度の場合、フォトカプラの消費電力の1/10~1/6で動作します。

ADuM140xアイソレータ・ファミリーは、独立した4つのアイソレーション・チャンネルをさまざまなチャンネル構成とデータレートで提供します(「オーダー・ガイド」参照)。ADuM140xの全モデルは、両側とも2.7~5.5Vの電源電圧で動作するため、低電圧システムと互換性を持ち、さらに絶縁バリアをまたぐ電圧変換機能も可能にします。さらに、ADuM140xはパルス幅歪みが小さく(CRWグレードで2ns未満)、かつチャンネル間マッチングが優れています(CRWグレードで2ns未満)。ADuM140xアイソレータは、他のフォトカプラとは異なり、入力ロジックに遷移がない場合およびパワーアップ/パワーダウン時に、DCを正確に維持する特許取得済みのリフレッシュ機能を持っています。

機能ブロック図

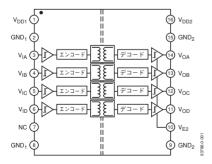


図1. ADuM1400の機能ブロック図

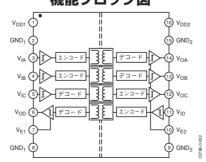


図2. ADuM1401の機能ブロック図

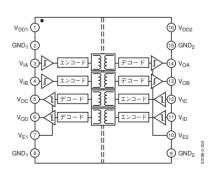


図3. ADuM1402の機能ブロック図

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって生じる第三者の特許や権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。本紙記載の商標および登録商標は、各社の所有に属します。

©2004 Analog Devices, Inc. All rights reserved.

REV.A

本 社/東京都港区海岸1-16-1 電話03(5402)8200 〒105-6891 ニューピア竹芝サウスタワービル

大阪営業所/大阪府大阪市淀川区宮原3-5-36 電話06(6350)6868(代) 〒532-0003 新大阪MTビル2号

目次

5
7
10
10
10
11
11
13

ESDに関する汪意 ····································	12
ピン配置および機能の説明	13
代表的な性能特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
アプリケーション情報	17
PCボードのレイアウト	17
伝搬遅延に関係するパラメータ	17
DC精度と磁界耐性	17
消費電力	18
外形寸法	19
ナーダー・ガイド	10

改訂履歴

5/04-Date Sheet Changed from Rev.0 to Rev.A.	
Updated FormatUniver	
Changes to the Fearures · · · · · · · · · · · · · · · · · · ·	…1
Changes to Table 7 and Table 8 ······	14
Changes to Table 9 · · · · · · · · · · · · · · · · · ·	15
Changes to the DC Correctness and Magnetic Field Immunity	
Section·····	20
Changes to the Power Consumption Section ······	21
Changes to the Ordering Guide	22

9/03-Revision 0: Initial Version.

2 REV.0

仕様

電気的特性—5V動作時¹

4.5V \leq V_{DD1} \leq 5.5V、4.5V \leq V_{DD2} \leq 5.5V。特に指定のない限り、全推奨動作範囲に対してすべてのMin/Max仕様が適用されます。すべてのTyp値はT_A=25 $^{\circ}$ C、V_{DD1}=V_{DD2}=5Vでの値です。

表1

パラメータ	記号	Min	Тур	Max	単位	テスト条件
DC仕様						
チャンネル当たりの入力電源電流、静止時	$I_{DDI(Q)}$		0.50	0.53	mA	
チャンネル当たりの出力電源電流、静止時	$I_{DDO(Q)}$		0.19	0.21	mA	
ADuM1400の4チャンネル合計の電源電流 ²						
DC~2Mbps						
V _{DDI} 電源電流	$I_{DD1(Q)}$		2.2	2.8	mA	DC~1MHzのロジック信号周波数
V _{DD2} 電源電流	$I_{DD2(Q)}$		0.9	1.4	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)						
V _{DDI} 電源電流	I _{DD1(10)}		8.6	10.6	mA	5MHzのロジック信号周波数
V _{DD2} 電源電流	I _{DD2(10)}		2.6	3.5	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)	222(10)					
V _{DDI} 電源電流	I _{DD1(100)}		76	100	mA	50MHzのロジック信号周波数
V _{DD2} 電源電流	I _{DD2(100)}		21	25	mA	50MHzのロジック信号周波数
ADuM1401の4チャンネル合計の電源電流 ²	BB2(100)					
DC~2Mbps						
V _{DDI} 電源電流	$I_{DD1(Q)}$		1.8	2.4	mA	DC~1MHzのロジック信号周波数
V _{DD2} 電源電流	$I_{DD2(Q)}$		1.2	1.8	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)	222(Q)					
V _{DDI} 電源電流	$I_{DD1(10)}$		7.1	9.0	mA	5MHzのロジック信号周波数
V _{DD2} 電源電流	I _{DD2(10)}		4.1	5.0	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)	-552(10)					, , , , , , , , , , , , , , , , , , ,
V _{DDI} 電源電流	I _{DD1(100)}		62	82	mA	50MHzのロジック信号周波数
V _{DD2} 電源電流	I _{DD2(100)}		35	43	mA	50MHzのロジック信号周波数
ADuM1402の4チャンネル合計の電源電流 ²	1DD2(100)				11111	BOTTE S TO S IN 3 /43 (DCSX
DC~2Mbps						
V _{DD1} またはV _{DD2} 電源電流	I _{DD1(Q)} ,		1.5	2.1	mA	DC~1MHzのロジック信号周波数
Today of the Control	$I_{DD2(Q)}$		110	2.1.	11111	DO IMES V S S III \$7/4,000
10Mbps (BRWとCRWグレードのみ)	1DD2(Q)					
V _{DD1} またはV _{DD2} 電源電流	I _{DD1(10)} ,		5.6	7.0	mA	5MHzのロジック信号周波数
V DDI GOVE VE V DD2-BIMAN BIMB	I _{DD2(10)}		2.0	,.0	11111	51.111E 5 7 7 1 1 3 7 7 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
90Mbps (CRWグレードのみ)	*DD2(10)					
V _{DD1} またはV _{DD2} 電源電流	I _{DD1(100)} ,		49	62	mA	50MHzのロジック信号周波数
TDDI & FC 100 TDD2 FB I/I/I FB I/III	I _{DD2(100)}		17	02	11111	SOME STATE OF STATE O
すべてのモデルに対して	*DD2(100)					
入力電流	I _{IA} , I _{IB} , I _{IC} ,	-10	+0.01	+10	μΑ	$0 \leq V_{IA}, V_{IB}, V_{IC}, V_{ID} \leq$
7 C) J PEDIO	I _{ID} , I _{E1} , I _{E2}		1 0.01	. 10	μ	V_{DD1} \sharp t
	IIDV TEIV TEZ					$V_{E2} \leq V_{DD1} \sharp \mathcal{L} \wr V_{DD2}$
ロジック・ハイレベル入力の閾値	V _{IH} , V _{EH}	2.0			V	V E2 = V BBT SK F C (SF V BB2
ロジック・ローレベル入力の閾値	V _{IL} , V _{EL}			0.8	V	
ロジック・ハイレベルの出力電圧	V _{OAH} , V _{OBH} ,	$V_{DD1}, V_{DD2} = 0.1$	5.0	0.0	V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
	V _{OCH} , V _{ODH}	$V_{DD1}, V_{DD2} = 0.4$			v	$I_{\text{Ox}} = -4\text{mA}, V_{\text{Ix}} = V_{\text{IxH}}$
ロジック・ローレベルの出力電圧	VOAL, VOBL	V DDIV V DD2 O.T.	0.0	0.1	V	$I_{Ox} = 20 \mu A$, $V_{Ix} = V_{IxI}$
	V _{OCL} , V _{ODL}		0.04	0.1	V	$I_{\text{Ox}} = 400 \mu\text{A}, V_{\text{Ix}} = V_{\text{IxL}}$
	VOCEN VODE		0.2	0.4	V	$I_{\text{Ox}} = 4\text{mA}, V_{\text{Ix}} = V_{\text{IxL}}$
スイッチング仕様			0.2	0.7	'	TOX THE Y IX VIX.
ADuM140xARW						
最小パルス幅3	PW			1000	ns	C _L =15pF、CMOS信号レベル
最大データレート4		1		1000	Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	50	65	100	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD		33	40	ns	C _L =15pF、CMOS信号レベル
/ / / IMALY / I WEH WHE I	1 11 12			10	110	or robit chiopin 3 .

パラメータ	記号	Min	Тур	Max	単位	テスト条件
	t _{PSK}			50	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチングフ	t _{PSKCD/OD}			50	ns	C _L =15pF、CMOS信号レベル
ADuM140xBRW						
最小パルス幅3	PW			100	ns	C _L =15pF、CMOS信号レベル
最大データレート4		10			Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	20	32	50	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD			3	ns	C _L =15pF、CMOS信号レベル
温度による変化			5		ps/℃	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			15	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向 チャンネル間 ⁷	t _{PSKCD}			3	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、反対方	+			6	ns	C _L =15pF、CMOS信号レベル
向チャンネル間 ⁷	t _{PSKOD}			U	115	CL - 13pr. CMO3 H 3 V · 17V
ADuM140xCRW						
最小パルス幅 ³	PW		6.7	10	ns	C _L =15pF、CMOS信号レベル
最大データレート4	1 **	90	150	10	Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	18	27	32	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD	10	0.5	2	ns	C _L =15pF、CMOS信号レベル
温度による変化	1 112		3	2	ps/°C	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}		J	10	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向	t _{PSKCD}			2	ns	C _L =15pF、CMOS信号レベル
チャンネル間7	- GRED			-	110	or repriversional of
チャンネル間マッチング、反対方	t _{PSKOD}			5	ns	C _L =15pF、CMOS信号レベル
向チャンネル間7						-
すべてのモデルに対して						
出力ディスエーブル伝搬遅延	t _{PHZ} , t _{PLH}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ/ローレベルからハイ・						
インピーダンスへ)						
出力イネーブル伝搬遅延	t _{PZH} , t _{PZL}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ・インピーダンスからハイ/						
ローレベルへ)						
出力立上がり/立下がり時間	t _R /t _F		2.5		ns	C _L =15pF、CMOS信号レベル
(10~90%値)						
ロジック・ハイレベル出力でのコ	CM _H	25	35		kV/μs	$V_{Ix} = V_{DD1} = V_{DD2}$
モン・モード過渡耐圧8						V _{CM} =1000V、過渡電圧振幅=800V
ロジック・ローレベル出力でのコ モン・モード過渡耐圧 ⁸	CM _L	25	35		kV/μs	V _{Ix} =0V、V _{CM} =1000V 過渡電圧振幅=800V
リフレッシュ・レート	f_r		1.2		Mbps	
チャンネル当たりの入力ダイナ	$I_{DDI(D)}$		0.19		mA/Mbps	
ミック電源電流9						
チャンネル当たりの出力ダイナ	$I_{DDO(D)}$		0.05		mA/Mbps	
ミック電源電流9						

注

¹ すべての電圧はそれぞれのグラウンドを基準とします。

² 電源電流値は、同一データレートで動作する全4チャンネルに対する値です。出力電源電流値は、出力負荷なしの場合です。所定のデータレートで動作する個々のチャンネル動作に対応する電源電流は、21ページの「消費電力」の説明に従って計算することができます。無負荷および有負荷状態に対するデータレートの関数としてのチャンネル当たりの電源電流については、図11~13を参照してください。ADuM1400/ADuM1401/ADuM1402チャンネル構成に対するデータレートの関数としてのIpp1とIpp2の合計電源電流については、図14~17を参照してください。

³ 最小パルス幅は、規定のパルス幅歪みが保証される最短のパルス幅です。

⁴ 最大データレートは、規定のパルス幅歪みが保証される最高速のデータレートです。

⁵ 伝搬遅延t_{PitL}は、V_L信号の立下がりエッジの50%レベルからV_{Ox}信号の立下がりエッジの50%レベルまでを測定した値です。伝搬遅延t_{PLH}は、V_L信号の立上がりエッジの50%レベルからV_{Ox}信号の立上がりエッジの50%レベルなでを測定した値です。

⁶ t_{esc} は、 t_{PHL} または t_{PLH} におけるワースト・ケースの差であり、推奨動作条件下で同一の動作温度、電源電圧、出力負荷で動作する複数のユニット間で測定されます。

⁷ 同方向チャンネル間マッチングは、絶縁バリアの同じ側に入力を持つ2つのチャンネル間の伝搬遅延の差の絶対値を表します。反対方向チャンネル間マッチングは、絶縁バリアの反対側に入力を持つ2 つのチャンネル間の伝搬遅延の差の絶対値を表します。

⁸ CM_B は、 $V_0 > 0.8V_{DD}$ を維持している間に保持されるコモン・モード電圧の最大スルーレートです。 CM_L は $V_0 < 0.8V$ を維持している間に保持されるコモン・モード電圧の最大スルーレートです。コモン・モード電圧スルーレートは、コモン・モード電圧の立上がりと立下がりの両エッジに適用されます。過渡電圧振幅は、コモン・モードを超える範囲を表します。

⁹ ダイナミック電源電流は、信号データレートを1Mbps増やすのに必要な電源電流の増分を表します。無負荷および有負荷状態に対するチャンネル当たりの電源電流については、図11~13を参照してください。所定のデータレートに対するチャンネル当たりの電源電流の計算については、21ページの「消費電力」を参照してください。

電気的特性—3V動作時¹

 $2.7V \le V_{DD1} \le 3.6V$ 、 $2.7V \le V_{DD2} \le 3.6V$ 。特に指定のない限り、全推奨動作範囲に対してすべてのMin/Max仕様が適用されます。すべてのTyp値は $T_A = 25$ $^{\circ}$ 、 $V_{DD1} = V_{DD2} = 3.0V$ での値です。

表2

パラメータ	記号	Min	Тур	Max	単位	テスト条件
DC仕様						
チャンネル当たりの入力電源電流、静止時	$I_{\mathrm{DDI(Q)}}$		0.26	0.31	mA	
チャンネル当たりの出力電源電流、静止時	I _{DDO(Q)}		0.11	0.14	mA	
ADuM1400の4チャンネル合計の電源電流 ²						
DC~2Mbps						
V _{DD1} 電源電流	$I_{DD1(O)}$		1.2	1.9	mA	DC~1MHzのロジック信号周波数
V_{DD2} 電源電流	$I_{DD2(Q)}$		0.5	0.9	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)						
V _{DDI} 電源電流	$I_{DD1(10)}$		4.5	6.5	mA	5MHzのロジック信号周波数
$ m V_{DD2}$ 電源電流	$I_{DD2(10)}$		1.4	2.0	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)						
V _{DDI} 電源電流	$I_{DD1(100)}$		42	65	mA	50MHzのロジック信号周波数
$ m V_{DD2}$ 電源電流	$I_{DD2(100)}$		11	15	mA	50MHzのロジック信号周波数
ADuM1401の4チャンネル合計の電源電流 ²						
DC~2Mbps						
V _{DDI} 電源電流	$I_{DD1(Q)}$		1.0	1.6	mA	DC~1MHzのロジック信号周波数
$V_{ m DD2}$ 電源電流	$I_{DD2(Q)}$		0.7	1.2	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)						
$V_{ ext{ iny DDI}}$ 電源電流	$I_{DD1(10)}$		3.7	5.4	mA	5MHzのロジック信号周波数
$ m V_{DD2}$ 電源電流	$I_{DD2(10)}$		2.2	3.0	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)						
$V_{ ext{ iny DDI}}$ 電源電流	$I_{DD1(100)}$		34	52	mA	50MHzのロジック信号周波数
$ m V_{DD2}$ 電源電流	$I_{DD2(100)}$		19	27	mA	50MHzのロジック信号周波数
ADuM1402の4チャンネル合計の電源電流 ²						
DC~2Mbps						
V _{DDI} またはV _{DD2} 電源電流	$I_{DD1(Q)}$		0.9	1.5	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)	$I_{DD2(Q)}$					
V _{DD1} またはV _{DD2} 電源電流	I _{DD1(10)} ,		3.0	4.2	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)	$I_{DD2(10)}$					
V _{DD1} またはV _{DD2} 電源電流	I _{DD1(100)} ,		27	39	mA	50MHzのロジック信号周波数
すべてのモデルに対して	$I_{DD2(100)}$					
入力電流	I _{IA} , I _{IB} , I _{IC} ,	-10	+0.01	+10	μ A	$0 \leq V_{IA}$, V_{IB} , V_{IC} , $V_{ID} \leq$
	I _{ID} , I _{E1} , I _{E2}					V_{DD1} または V_{DD2} 、 $0 \le V_{E1}$
						$V_{E2} \leq V_{DD1} \ddagger t t V_{DD2}$
ロジック・ハイレベル入力の閾値	V _{IH} , V _{EH}	1.6			V	
ロジック・ローレベル入力の閾値	V _{IL} , V _{EL}			0.4	V	
ロジック・ハイレベル出力電圧	V _{OAH} , V _{OBH} ,	$V_{DD1}, V_{DD2}=0.1$	3.0		V	$I_{Ox} = -20 \mu A$, $V_{Ix} = V_{IxH}$
	V _{OCH} , V _{ODH}	V_{DD1} , V_{DD2} -0.4	2.8		V	$I_{Ox} = -4mA$, $V_{Ix} = V_{IxH}$
ロジック・ローレベル出力電圧	VOAL, VOBL,		0.0	0.1	V	$I_{Ox}=20 \mu A$, $V_{Ix}=V_{IxL}$
	V _{OCL} , V _{ODL}		0.04	0.1	V	$I_{Ox}=400 \mu A$, $V_{Ix}=V_{IxL}$
			0.2	0.4	V	$I_{Ox}=4mA$, $V_{Ix}=V_{IxL}$
スイッチング仕様						
ADuM140xARW						
最小パルス幅3	PW			1000	ns	C _L =15pF、CMOS信号レベル
最大データレート4		1			Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	50	75	100	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} 5	PWD			40	ns	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			50	ns	C_L =15pF、CMOS信号レベル
チャンネル間マッチングフ	t _{PSKCD/OD}			50	ns	C _L =15pF、CMOS信号レベル

パラメータ	記号	Min	Тур	Max	単位	テスト条件
ADuM140xBRW						
最小パルス幅3	PW			100	ns	C _L =15pF、CMOS信号レベル
最大データレート4		10			Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	20	38	50	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD			3	ns	C _L =15pF、CMOS信号レベル
温度による変化			5		ps/°C	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			22	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向	t _{PSKCD}			3	ns	C _L =15pF、CMOS信号レベル
チャンネル間 ⁷						-
チャンネル間マッチング、反対方	t _{PSKOD}			6	ns	C _L =15pF、CMOS信号レベル
向チャンネル間7						-
ADuM140xCRW						
最小パルス幅³	PW		6.7	10	ns	C _L =15pF、CMOS信号レベル
最大データレート4		90	150		Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	20	34	45	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} 5	PWD		0.5	2	ns	C _L =15pF、CMOS信号レベル
温度による変化			3		ps/℃	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			16	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向	t _{PSKCD}			2	ns	C _L =15pF、CMOS信号レベル
チャンネル間7						
チャンネル間マッチング、反対方	t _{PSKOD}			5	ns	C _L =15pF、CMOS信号レベル
向チャンネル間7						
すべてのモデルに対して						
出力ディスエーブル伝搬遅延	t _{PHZ} , t _{PLH}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ/ローレベルからハイ・						
インピーダンスへ)						
出力イネーブル伝搬遅延	t _{PZH} , t _{PZL}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ・インピーダンスから						
ハイ/ローレベルへ)						
出力立上がり/立下がり時間	t _R /t _F		3		ns	C _L =15pF、CMOS信号レベル
(10~90%値)						
ロジック・ハイレベル出力でのコ	CM _H	25	35		kV/μs	$V_{Ix} = V_{DD1} = V_{DD2}$
モン・モード過渡耐圧8						V _{CM} =1000V、過渡電圧振幅=800V
ロジック・ローレベル出力でのコ	CM _L	25	35		kV/μs	$V_{Ix} = 0V, V_{CM} = 1000V$
モン・モード過渡耐圧8						過渡電圧振幅=800V
リフレッシュ・レート	f_r		1.1		Mbps	
チャンネル当たりの入力ダイナ	$I_{DDI(D)}$		0.10		mA/Mbps	
ミック電源電流9						
チャンネル当たりの出力ダイナ	$I_{DDO(D)}$		0.03		mA/Mbps	
ミック電源電流9						

注

6

¹ すべての電圧はそれぞれのグラウンドを基準とします。

² 電源電流値は、同一データレートで動作する全4チャンネルに対する値です。出力電源電流値は、出力負荷なしの場合です。所定のデータレートで動作する個々のチャンネル動作に対応する電源電流は、21ページの「消費電力」の説明に従って計算することができます。無負荷および有負荷状態に対するデータレートの関数としてのチャンネル当たりの電源電流については、図11~13を参照してください。ADuM1400/ADuM1401/ADuM1402チャンネル構成に対するデータレートの関数としてのIontとIonzの合計電源電流については、図14~17を参照してください。

³ 最小パルス幅は、規定のパルス幅歪みが保証される最短のパルス幅です。

⁴ 最大データレートは、規定のパルス幅歪みが保証される最高速のデータレートです。

⁵ 伝搬遅延tern.は、Vn.信号の立下がりエッジの50%レベルからVo.信号の立下がりエッジの50%レベルまでを測定した値です。伝搬遅延tern.は、Vn.信号の立上がりエッジの50%レベルからVo.信号の立上がりエッジの50%レベルまでを測定した値です。

 $[\]mathbf{6}$ \mathbf{t}_{PSK} は、 \mathbf{t}_{PHL} または \mathbf{t}_{PLH} におけるワースト・ケースの差であり、推奨動作条件下で同一の動作温度、電源電圧、出力負荷で動作する複数のユニット間で測定されます。

⁷ 同方向チャンネル間マッチングは、絶縁バリアの同じ側に入力を持つ2つのチャンネル間の伝搬遅延の差の絶対値を表します。反対方向チャンネル間マッチングは、絶縁バリアの反対側に入力を持つ2つのチャンネル間の伝搬遅延の差の絶対値を表します。

 $^{8~}CM_{\rm H}$ は、 $V_{\rm O}>0.8V_{\rm DD}$ を維持している間に保持されるコモン・モード電圧の最大スルーレートです。 $CM_{\rm L}$ は $V_{\rm O}<0.8V$ を維持している間に保持されるコモン・モード電圧の最大スルーレートです。コモン・モード電圧スルーレートは、コモン・モード電圧の立上がりと立下がりの両エッジに適用されます。過渡電圧振幅は、コモン・モードを超える範囲を表します。

⁹ ダイナミック電源電流は、信号データレートをIMbps増やすのに必要な電源電流の増分を表します。無負荷および有負荷状態に対するチャンネル当たりの電源電流については、図11~13を参照してください。所定のデータレートに対するチャンネル当たりの電源電流の計算については、21ページの「消費電力」を参照してください。

電気的特性-5V/3V動作時または3V/5V動作時1

5V/3V動作: $4.5V \le V_{DD1} \le 5.5V$ 、 $2.7V \le V_{DD2} \le 3.6V$ 。3V/5V動作: $2.7V \le V_{DD1} \le 3.6V$ 、 $4.5V \le V_{DD2} \le 5.5V$ 。特に指定のない限り、全推奨動作範囲に対してすべてのMin/Max仕様が適用されます。すべてのTyp値は $T_A = 25$ C、 $V_{DD1} = 3.0V$ 、 $V_{DD2} = 5V$ 、または $V_{DD1} = 5V$ 、 $V_{DD2} = 3.0V$ での値です。

表3

パラメータ	記号	Min	Тур	Max	単位	テスト条件
DC仕様						
チャンネル当たりの入力電源電流、静止時	$I_{DDI(Q)}$					
5V/3V動作時	² DDI(Q)		0.50	0.53	mA	
3V/5V動作時			0.26	0.31	mA	
チャンネル当たりの出力電源電流、静止時	$I_{DDO(Q)}$		0.20	0.01	11111	
5V/3V動作時	*DDO(Q)		0.11	0.14	mA	
3V/5V動作時			0.19	0.21	mA	
ADuM1400の4チャンネル合計の電源電流 ²			0.17	0.21	11111	
DC~2Mbps						
V _{DDI} 電源電流	$I_{DD1(Q)}$					
5V/3V動作時	IDDI(Q)		2.2	2.8	mA	DC~1MHzのロジック信号周波数
3V/5V動作時			1.2	1.9	mA	DC~1MHzのロジック信号周波数
V _{DD2} 電源電流	$I_{DD2(Q)}$		1.2	1.7	1112 \$	DC HVIII 2 7 7 1 1 1 7/11/00 XX
5V/3V動作時	*DD2(Q)		0.5	0.9	mA	DC~1MHzのロジック信号周波数
3V/5V動作時			0.9	1.4	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)			0.7	1,7	11174	DC HVIIIZ 7 7 7 III 17/11/XXX
V _{DDI} 電源電流	$I_{DD1(10)}$					
5V/3V動作時	1DD1(10)		8.6	10.6	mA	5MHzのロジック信号周波数
3V/5V動作時			4.5	6.5	mA	5MHzのロジック信号周波数
V _{DD2} 電源電流	$I_{DD2(10)}$		4.5	0.5	IIIA	SWITE*グロングク 旧 好向後数
5V/3V動作時	1DD2(10)		1.4	2.0	mA	5MHzのロジック信号周波数
3V/5V動作時			2.6	3.5	mA	5MHzのロジック信号周波数
90Mbps $(CRWグレードのみ)$			2.0	5.5	IIIA	JMHZ*ノロンノノ 旧 引用依数
V _{DDI} 電源電流	т					
5V/3V動作時	$I_{DD1(100)}$		76	100	mA	50MHzのロジック信号周波数
3V/5V動作時			42	65	mA	50MHzのロジック信号周波数
V _{DD2} 電源電流	т.		42	03	IIIA	SOMMIZVグロンプクログ内(火奴
5V/3V動作時	$I_{DD2(100)}$		11	15	mA	50MHzのロジック信号周波数
3V/5V動作時			21	25	mA	50MHzのロジック信号周波数
ADuM1401の4チャンネル合計の電源電流 ²			21	23	IIIA	SOMMIZVグロンプクログ内(火奴
DC~2Mbps						
V _{DDI} 電源電流	т.					
5V/3V動作時	$I_{DD1(Q)}$		1.8	2.4	mA	DC~1MHzのロジック信号周波数
3V/3V動作時 3V/5V動作時			1.0	1.6		DC~IMHzのロジック信号周波数
V _{DD2} 電源電流			1.0	1.0	mA	DC。IMINZOプロンプラ信号向似数
V _{DD2} 电你电机 5V/3V動作時	$I_{DD2(Q)}$		0.7	1.2	A	DC~1MHzのロジック信号周波数
3V/3V動作時 3V/5V動作時			1.2	1.2	mA	DC~IMHzのロジック信号周波数 DC~IMHzのロジック信号周波数
3 V/3 V 到介下時 10Mbps (BRWとCRWグレードのみ)			1.2	1.8	mA	DCでIMHZのロンケケ信号向仮数
_						
V _{DDI} 電源電流 5V/3V動作時	$I_{DD1(10)}$		7.1	0.0	4	5MHzのロジック信号周波数
3V/3V動作時 3V/5V動作時			7.1	9.0	mA	
			3.7	5.4	mA	5MHzのロジック信号周波数
V _{DD2} 電源電流 5V/3V動作時	$I_{DD2(10)}$		2.2	3.0	4	5MHzのロジック信号周波数
3V/3V動作時 3V/5V動作時					mA	
3V/3V駅打ド時 90Mbps (CRWグレードのみ)			4.1	5.0	mA	5MHzのロジック信号周波数
V _{DDI} 電源電流 5V/2V動作時	$I_{\text{DD1(100)}}$		60	92	4	50MIL-0月33 万层县田油料
5V/3V動作時			62	82 52	mA	50MHzのロジック信号周波数
3V/5V動作時	_		34	52	mA	50MHzのロジック信号周波数
V _{DD2} 電源電流	$I_{DD2(100)}$		10	27		503411 の日本、大臣日国連州
5V/3V動作時			19	27	mA	50MHzのロジック信号周波数

パラメータ	記号	Min	Тур	Max	単位	テスト条件
3V/5V動作時			35	43	mA	50MHzのロジック信号周波数
ADuM1402の4チャンネル合計の電源電流 ²						
DC~2Mbps						
$V_{ exttt{DDI}}$ 電源電流	$I_{DD1(Q)}$					
5V/3V動作時			1.5	2.1	mA	DC~1MHzのロジック信号周波数
3V/5V動作時			0.9	1.5	mA	DC~1MHzのロジック信号周波数
$ m V_{DD2}$ 電源電流	$I_{DD2(Q)}$					
5V/3V動作時			0.9	1.5	mA	DC~1MHzのロジック信号周波数
3V/5V動作時			1.5	2.1	mA	DC~1MHzのロジック信号周波数
10Mbps (BRWとCRWグレードのみ)						
V _{DDI} 電源電流	$I_{DD1(10)}$					
5V/3V動作時			5.6	7.0	mA	5MHzのロジック信号周波数
3V/5V動作時			3.0	4.2	mA	5MHzのロジック信号周波数
V_{DD2} 電源電流	$I_{DD2(10)}$					
5V/3V動作時			3.0	4.2	mA	5MHzのロジック信号周波数
3V/5V動作時			5.6	7.0	mA	5MHzのロジック信号周波数
90Mbps (CRWグレードのみ)						
V _{DDI} 電源電流	$I_{DD1(100)}$					
5V/3V動作時			49	62	mA	50MHzのロジック信号周波数
3V/5V動作時			27	39	mA	50MHzのロジック信号周波数
V _{DD2} 電源電流	$I_{DD2(100)}$					
5V/3V動作時			27	39	mA	50MHzのロジック信号周波数
3V/5V動作時			49	62	mA	50MHzのロジック信号周波数
すべてのモデルに対して						
入力電流	I _{IA} , I _{IB} , I _{IC} ,	-10	+0.01	+10	μΑ	$0 \leq V_{IA}, V_{IB}, V_{IC}, V_{ID} \leq$
, 1,70 · G.00	I _{ID} , I _{E1} , I _{E2}				/***	V_{DD1} \sharp t t t V_{DD2} , t
ロジック・ハイレベル入力の閾値	V _{IH} , V _{EH}					VE2 = VDDI & /CV& VDD2
5V/3V動作時	VIH VEH	2.0			V	
					V	
3V/5V動作時 ロジック・ローレベル入力の閾値	37 37	1.6			V	
	V _{IL} , V _{EL}			0.0	37	
5V/3V動作時				0.8	V	
3V/5V動作時		T. M. 0.1	**	0.4	V	
ロジック・ハイレベル出力電圧	V _{OAH} , V _{OBH} ,	$V_{DD1}/V_{DD2} = 0.1$			V	$I_{Ox} = -20 \mu A, V_{Ix} = V_{IxH}$
中等 4 中 1 89 田中東区	V _{OCH} , V _{ODH}	$V_{DD1}/V_{DD2} = 0.4$			V	$I_{Ox} = -4mA$, $V_{Ix} = V_{IxH}$
ロジック・ローレベル出力電圧	V _{OAL} , V _{OBL} ,		0.0	0.1	V	$I_{Ox} = 20 \mu A$, $V_{Ix} = V_{IxL}$
	V _{OCL} , V _{ODL}		0.04	0.1	V	$I_{Ox}=400 \mu$ A, $V_{Ix}=V_{IxL}$
スイッチング仕様			0.2	0.4	V	$I_{Ox}=4mA$, $V_{Ix}=V_{IxL}$
* **						
ADuM140xARW	DW			1000		C -15-E CMOS屋号L SUL
最小パルス幅3	PW			1000	ns	C _L =15pF、CMOS信号レベル
最大データレート4		1	=0	100	Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	50	70	100	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} 5	PWD			40	ns	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			50	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング7	t _{PSKCD/OD}			50	ns	C _L =15pF、CMOS信号レベル
ADuM140xBRW						
最小パルス幅3	PW			100	ns	C _L =15pF,CMOS信号レベル
最大データレート4		10			Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	15	35	50	ns	C_L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD			3	ns	C _L =15pF、CMOS信号レベル

8

パラメータ	記号	Min	Тур	Max	単位	テスト条件
温度による変化			5		ps/°C	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			22	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向	t _{PSKCD}			3	ns	C _L =15pF、CMOS信号レベル
チャンネル間7						
チャンネル間マッチング、反対方	t _{PSKOD}			6	ns	C _L =15pF、CMOS信号レベル
向チャンネル間7						
ADuM140xCRW						
最小パルス幅3	PW		6.7	10	ns	C _L =15pF、CMOS信号レベル
最大データレート4		90	150		Mbps	C _L =15pF、CMOS信号レベル
伝搬遅延5	t _{PHL} , t _{PLH}	20	30	40	ns	C _L =15pF、CMOS信号レベル
パルス幅歪み、 t _{PLH} -t _{PHL} ⁵	PWD		0.5	2	ns	C _L =15pF、CMOS信号レベル
温度による変化			3		ps/℃	C _L =15pF、CMOS信号レベル
伝搬遅延スキュー6	t _{PSK}			14	ns	C _L =15pF、CMOS信号レベル
チャンネル間マッチング、同方向	t _{PSKCD}			2	ns	C _L =15pF、CMOS信号レベル
チャンネル間7						_
チャンネル間マッチング、反対方	t _{PSKOD}			5	ns	C _L =15pF、CMOS信号レベル
向チャンネル間7						
すべてのモデルに対して						
出力ディスエーブル伝搬遅延	t _{PHZ} , t _{PLH}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ/ローレベルから						
ハイ・インピーダンスへ)						
出力イネーブル伝搬遅延	t _{PZH} , t _{PZL}		6	8	ns	C _L =15pF、CMOS信号レベル
(ハイ・インピーダンスから						
ハイ/ローレベルへ)						
出力立上がり/立下がり時間	t_R/t_f					C _L =15pF、CMOS信号レベル
(10~90%値)						
5V/3V動作時			3.0		ns	
3V/5V動作時			2.5		ns	
ロジック・ハイレベル出力でのコ	CM _H	25	35		kV/μs	$V_{Ix} = V_{DD1}/V_{DD2}, V_{CM} = 1000V,$
モン・モード過渡耐圧8						過渡電圧振幅=800V
ロジック・ローレベル出力でのコ	CM _L	25	35		kV/μs	$V_{Ix} = 0V, V_{CM} = 1000V,$
モン・モード過渡耐圧8						過渡電圧振幅=800V
リフレッシュ・レート	f _r					
5V/3V動作時			1.2		Mbps	
3V/5V動作時			1.1		Mbps	
チャンネル当たりの入力ダイナ	$I_{DDI(D)}$					
ミック電源電流9						
5V/3V動作時			0.19		mA/Mbps	
3V/5V動作時			0.10		mA/Mbps	
チャンネル当たりの出力ダイナ	$I_{DDO(D)}$					
ミック電源電流9						
5V/3V動作時			0.03		mA/Mbps	
3V/5V動作時			0.05		mA/Mbps	

注

² 電源電流値は、同一データレートで動作する全4チャンネルに対する値です。出力電源電流値は、出力負荷なしの場合です。所定のデータレートで動作する個々のチャンネル動作に対応する電源電流は、21ページの「消費電力」の説明に従って計算することができます。無負荷および有負荷状態に対するデータレートの関数としてのチャンネル当たりの電源電流については、図11~13を参照してください。ADuM1400/ADuM1401/ADuM1402チャンネル構成に対するデータレートの関数としてのIpot/とIpozの合計電源電流については、図14~17を参照してください。

³ 最小パルス幅は、規定のパルス幅歪みが保証される最短のパルス幅です。

⁴ 最大データレートは、規定のパルス幅歪みが保証される最高速のデータレートです。

⁵ 伝搬遅延 $_{\rm PHL}$ は、 $V_{\rm K}$ 信号の立下がりエッジの50%レベルから $V_{\rm Ox}$ 信号の立下がりエッジの50%レベルまでを測定した値です。伝搬遅延 $_{\rm tr,H}$ は、 $V_{\rm K}$ 信号の立上がりエッジの50%レベルから $V_{\rm Ox}$ 信号の立上がりエッジの50%レベルまでを測定した値です。

⁶ teskは、tpuLまたはtpuにおけるワースト・ケースの差であり、推奨動作条件下で同一の動作温度、電源電圧、出力負荷で動作する複数のユニット間で測定されます。

⁷ 同方向チャンネル間マッチングは、絶縁バリアの同じ側に入力を持つ2つのチャンネル間の伝搬遅延の差の絶対値を表します。反対方向チャンネル間マッチングは、絶縁バリアの反対側に入力を持つ2 つのチャンネル間の伝搬遅延の差の絶対値を表します。

⁸ CM_nは、V_o > 0.8V_{DD2}を維持している間に保持されるコモン・モード電圧の最大スルーレートです。CM_LはV_o < 0.8Vを維持している間に保持されるコモン・モード電圧の最大スルーレートです。コモン・モード電圧スルーレートは、コモン・モード電圧の立上がりと立下がりの両エッジに適用されます。過渡電圧振幅は、コモン・モードを超える範囲を表します。

⁹ ダイナミック電源電流は、信号データレートを1Mbps増やすのに必要な電源電流の増分を表します。無負荷および有負荷状態に対するチャンネル当たりの電源電流については、図11~13を参照してください。所定のデータレートに対するチャンネル当たりの電源電流の計算については、21ページの「消費電力」を参照してください。

パッケージ特性

表4

パラメータ	記号	Min	Тур	Max	単位	テスト条件
抵抗(入力-出力間)」	R _{I-O}		10^{12}		Ω	
容量(入力-出力間)」	C _{I-O}		2.2		pF	f=1MHz
入力容量 ²	C _I		4.0		pF	
ICジャンクション-ケース間熱抵抗、サイド1	$\theta_{ m JCI}$		33		°C/W	パッケージ下側の中央に熱電対
						を配置
ICジャンクション-ケース間熱抵抗、サイド2	$\theta_{\text{ JCO}}$		28		°C/W	

注

- 1 2ピン・デバイスを想定。1、2、3、4、5、6、7、8の各ピンを互いに接続し、9、10、11、12、13、14、15、16の各ピンを互いに接続。
- 2 入力容量は任意の入力データ・ピンとグラウンド間で測定。

適用規格

ADuM140xは表5に示す機関から認定取得済みです。

表5

UL	CSA	VDE
1577部品認定プログラムによる認定!	「CSA Component Acceptance Notice #5A」 による認定	DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01による認定 ²
2500V rms絶縁電圧での二重絶縁	400V rmsの最大動作電圧によるCSA 60950-1-03およびIEC 60950-1に準拠した	560Vピーク基本絶縁
	強化絶縁	DIN EN 60747-5-2 (VDE 0884 Part 2):2003-01、 DIN EN 60950 (VDE 0805):2001-12に準拠。 560Vピーク、EN 60950:2000強化絶縁
File E214100	File 205078	File 2471900-4880-0001

注

- 2 DIN EN 60747-5-2に従い、ADuM140xの各モデルに1050Vピーク以上の絶縁テスト電圧を1秒間加えたテストで保証されています (部分放電の検出規定値=5pC)。「*」マーク付のブランドは、DIN EN 60747-5-2認定品を表します。

絶縁および安全性関連の仕様

表6

パラメータ	記号	値	単位	条件
定格絶縁電圧		2500	V rms	1分間継続
最小外部空間距離 (クリアランス)	L(I01)	最小8.40	mm	入力ピンから出力ピンまでの空間最短距離を
最小外部沿面距離 (クリページ)	L(I02)	最小8.10	mm	測定 入力ピンから出力ピンまでのボディ表面に沿 う最短パスを測定
最小内部空間距離 (クリアランス)		最小0.017	mm	絶縁体を通過する絶縁距離
耐トラッキング性(トラッキング指数)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
絶縁グループ		IIIa		材料グループ(DIN VDE 0110、1/89、Table 1)

10

DIN EN 60747-5-2 (VDE 0884 PART 2) 絶縁特性

表フ

説明	記号	特性	単位
DIN VDE 0110による絶縁分類			
定格メイン電圧≦150V rmsの場合		I-IV	
定格メイン電圧≦300V rmsの場合		I-III	
定格メイン電圧≦400V rmsの場合		I-II	
環境による分類		40/105/21	
汚染度(DIN VDE 0110、Table I)		2	
最大動作絶縁電圧	V _{IORM}	560	Vピーク
入力-出力間テスト電圧、メソッドb1	V_{PR}	1050	Vピーク
V _{IORM} ×1.875=V _{PR} 、100%の出荷テスト、			
t _m =1秒、部分放電<5 pC			
入力-出力間テスト電圧、メソッドa	V_{PR}		
環境テスト・サブグループ1の後		896	Vピーク
$V_{IORM} \times 1.6 = V_{PR}$ 、 $t_m = 60$ 秒、部分放電<5 pC			
入力および/または安全性テスト・サブグループ2/3の後		672	Vピーク
V _{IORM} ×1.2=V _{PR} 、t _m =60秒、部分放電<5 pC			
最大許容過電圧	V_{TR}	4000	Vピーク
(過渡過電圧、t _{TR} =10秒)			
安全性限界值			
(故障時に許容できる最大値、図4の温度ディレーティング・カーブも参照)			
ケース温度	T_{S}	150	$^{\circ}\mathbb{C}$
サイド1 (ピン1~8) 電流	I_{S1}	265	mA
サイド2(ピン9~16)電流	I_{S2}	335	mA
T _S 、V _{IO} =500Vでの絶縁抵抗	Rs	>109	Ω

このアイソレータは、安全性限界値データ以内での安全な電気的絶縁用です。安全性データは、保護回路を使って遵守してください。

パッケージ表面の「*」マークは、560Vピーク動作電圧に対してDIN EN 60747-5-2認定済みであることを表示します。

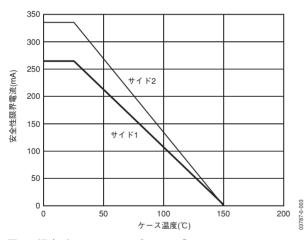


図4. 温度ディレーティング・カーブ、DIN EN 60747-5-2に よるケース温度に対する安全性限界電流の依存性

推奨動作条件

表8

パラメータ	記号	Min	Max	単位
動作温度	T _A	-40	+105	\mathbb{C}
電源電圧」	V_{DD1} , V_{DD2}	2.7	5.5	V
入力信号の立上がり			1.0	ms
および立下がり時間				

注

1 すべての電圧はそれぞれのグラウンドを基準とします。 外部磁界耐性については、17ページの「DC精度と磁界耐性」を参照してください。

絶対最大定格

表9

パラメータ	記号	Min	Max	単位
保存温度	T _{ST}	-65	+150	$^{\circ}$
動作時周囲温度	T _A	-40	+105	$^{\circ}$ C
電源電圧」	$V_{\rm DD1}$, $V_{\rm DD2}$	-0.5	+7.0	V
入力電圧1、2	V_{IA} , V_{IB} , V_{IC} , V_{ID} , V_{E1} , V_{E2}	-0.5	$V_{DDI} + 0.5$	V
出力電圧1、2	V _{OA} , V _{OB} , V _{OC} , V _{OD}	-0.5	$V_{DDO} + 0.5$	V
ピンの平均出力電流 ³				
サイド1 (ピン1~8)	I_{O1}	-18	+18	mA
サイド2 (ピン9~16)	I_{O2}	-22	+22	mA
コモン・モード過渡電圧4		-100	+100	kV/μs

注

- 1 すべての電圧はそれぞれのグラウンドを基準とします。
- 2 $V_{\rm DD}$ と $V_{\rm DDO}$ はそれぞれ、各チャンネルの入力側と出力側の電源電圧を表します。 $\lceil PC$ ボードのレイアウト」を参照してください。
- 3 種々の温度に対する最大定格電流値は図4を参照してください。
- 4 絶縁パリアを超えるコモン・モード過渡電圧を表します。絶対最大定格を超えるコモン・モード過渡電圧を加えると、ラッチアップまたは恒久的損傷が生じることがあります。

上記の絶対最大定格を超えるストレスを加えるとデバイスに恒久的な損傷を与えることがあります。この規定はストレス定格の規定のみを指定するものであり、この仕様の動作セクションに記載する規定値以上でのデバイス動作を定めたものではありません。長時間デバイスを絶対最大定格状態に置くと、デバイスの信頼性に影響を与えることがあります。特に指定のない限り、周囲温度は25℃です。

注意

ESD (静電放電) の影響を受けやすいデバイスです。人体や試験機器には4,000Vもの高圧の静電気が容易に蓄積され、検知されないまま放電されることがあります。本製品は当社独自のESD保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、回復不能の損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESDに対する適切な予防措置を講じることをお勧めします。

表10. 真理値表(正論理)

V _{IX} 入力¹	V _{EX} 入力 ²	V _{DDI} 状態 ¹	V _{DDO} 状態 ¹	V _{ox} 出力 ¹	注
Н	HまたはNC	電源オン	電源オン	Н	
L	HまたはNC	電源オン	電源オン	L	
X	L	電源オン	電源オン	Z	
X	HまたはNC	電源オフ	電源オン	Н	出力はV _{DDI} 電源回復から1 µ s以内に入力状態に戻ります。
X	L	電源オフ	電源オン	Z	
X	X	電源オン	電源オフ	不定	$V_{\rm EX}$ 状態がHまたはNCの場合、出力は $V_{\rm DDO}$ 電源回復から $1\mu{\rm s}$ 以内に入力状態に戻ります。 $V_{\rm EX}$ 状態がLの場合、出力は $V_{\rm DDO}$ 電源回復から $8{\rm ns}$ 以内にハイ・インピーダンス状態に戻ります。

注

12

 $^{1 \} V_{IX} \& V_{OX}$ はそれぞれ、チャンネル(A、B、C、D)の入力信号と出力信号を表します。 V_{EX} は、 V_{OX} 出力と同じ側の出力イネーブル信号を表します。 $V_{DDI} \& V_{DDO}$ はそれぞれ、各チャンネルの入力側と出力側の電源電圧を表します。

² ノイズの多い環境では、Vexを外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。

ピン配置および機能の説明

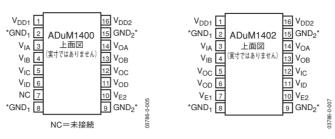


図5. ADuM1400のピン配置

図7. ADuM1402のピン配置

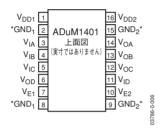


図6. ADuM1401のピン配置

^{*}ビン2と8は内部で接続されています。両ピンはGND₁に接続することを推奨します。ピン9と15は内部で接続されています。両ピンはGND₂に接続することを推奨します。出力を常にイネーブルしておく場合には、ADuM1401/ADuM1402の出力イネーブル (ピン10) を開放状態にしておくことができます。出力を常にイネーブルしておく場合には、ADuM1401/ADuM1402の出力イネーブル (ピン7と10) を開放状態にしておくことができます。ノイズの多い環境では、ピン7 (ADuM1401とADuM1402) とピン10 (全モデル) を外部のロジック・ハイレベルまたはローレベルに接続することを推奨します。

ピン機能の説明

表11. ADuM1400ピン機能の説明

ピン番号	記号	機能
1	V_{DD1}	アイソレータ・サイド1の電源電圧、2.7~
		5.5V _o
2	GND_1	グラウンド1。アイソレータのサイド1のグラ
		ウンド基準。
3	V_{IA}	ロジック入力A
4	V_{IB}	ロジック入力B
5	V_{IC}	ロジック入力C
6	V_{ID}	ロジック入力D
7	NC	未接続
8	GND_1	グラウンド1。アイソレータのサイド1のグラ
		ウンド基準。
9	GND_2	グラウンド2。アイソレータのサイド2のグラ
		ウンド基準。
10	V_{E2}	出力イネーブル2。アクティブ・ハイレベルの
		ロジック入力。V _{E2} がハイレベルまたは開放の
		とき、VoA、VoB、Voc、VoDの各出力がイネー
		ブルになります。V _{E2} がローレベルのとき、
		VoA、VoB、Voc、VoDの各出力がディスエーブ
		レになります。ノイズの多い環境では、V _{E2} を
		外部のロジック・ハイレベルまたはローレベ
	* 7	ルに接続することを推奨します。
11	V _{OD}	ロジック出力D
12	V _{OC}	ロジック出力C
13	V _{OB}	ロジック出力B
14	V _{OA}	ロジック出力A
15	GND_2	グラウンド2。アイソレータのサイド2のグラ
16	3.7	ウンド基準。 アイソレータのサイド2の電源電圧、2.7~5.5V。
16	V_{DD2}	ノイノレーグのサイト2の電源電圧、2.1~3.3V。

表12. ADuM1401ピン機能の説明

ピン番号	記号	機能
1	V_{DD1}	アイソレータのサイド1の電源電圧、2.7~5.5V。
2	GND_1	グラウンド1。アイソレータのサイド1のグラ
		ウンド基準。
3	V_{IA}	ロジック入力A
4	V_{IB}	ロジック入力B
5	V_{IC}	ロジック入力C
6	V_{OD}	ロジック出力D
7	V_{E1}	出力イネーブル1。アクティブ・ハイレベルの
		ロジック入力。VEIがハイレベルまたは開放の
		とき、Voo出力がイネーブルになります。Vel
		がローレベルのとき、VoDがディスエーブルに
		なります。ノイズの多い環境では、VEIを外部
		のロジック・ハイレベルまたはローレベルに
		接続することを推奨します。
8	GND_1	グラウンド1。アイソレータのサイド1のグラ
0	CNID	ウンド基準。
9	GND_2	グラウンド2。アイソレータのサイド2のグラ ウンド基準。
10	V_{F2}	ワット蚕年。 出力イネーブル2。アクティブ・ハイレベルの
10	▼ E2	ロジック入力。Vesがハイレベルまたは開放の
		とき、Voa、Vob、Vocの各出力がイネーブル
		になります。 V_{E2} がローレベルのとき、 V_{OA} 、
		VOB、VOCの各出力がディスエーブルになりま
		す。ノイズの多い環境では、Vezを外部のロジ
		ック・ハイレベルまたはローレベルに接続す
		ることを推奨します。
11	V_{ID}	ロジック入力D
12	V_{OC}	ロジック出力C
13	V_{OB}	ロジック出力B
14	V_{OA}	ロジック出力A
15	GND_2	グラウンド2。アイソレータのサイド2のグラ
		ウンド基準。
16	V_{DD2}	アイソレータ・サイド1の電源電圧、2.7~5.5V。

表13. ADuM1402ピン機能の説明

ピン番号	記号	機能
1	V_{DD1}	アイソレータのサイド1の電源電圧、2.7~
		5.5V _o
2	GND ₁	グラウンド1。アイソレータのサイド1のグラ
		ウンド基準。
3	V_{IA}	ロジック入力A
4	V_{IB}	ロジック入力B
5	Voc	ロジック出力C
6	V_{OD}	ロジック出力D
7	V _{E1}	出力イネーブル1。アクティブ・ハイレベルの
		ロジック入力。V _{EI} がハイレベルまたは開放の
		とき、VocとVonの各出力がイネーブルになり
		ます。 V_{EI} がローレベルのとき、 V_{OC} と V_{OD} の各
		出力がディスエーブルになります。ノイズの
		多い環境では、 V_{El} を外部のロジック・ハイレ
		ベルまたはローレベルに接続することを推奨
		します。
8	GND ₁	グラウンド1。アイソレータのサイド1のグラ
		ウンド基準。
9	GND ₂	グラウンド2。アイソレータのサイド2のグラ
		ウンド基準。
10	V_{E2}	出力イネーブル2。アクティブ・ハイレベルの
		ロジック入力。VE2がハイレベルまたは開放の
		とき、VoAとVoBの各出力がイネーブルになり
		ます。V _{E2} がローレベルのとき、V _{OA} とV _{OB} の各
		出力がディスエーブルになります。ノイズの
		多い環境では、V _{E2} を外部のロジック・ハイレ
		ベルまたはローレベルに接続することを推奨
		します。
11	$V_{\rm ID}$	ロジック入力D
12	V_{IC}	ロジック入力C
13	V_{OB}	ロジック出力B
14	V_{OA}	ロジック出力A
15	GND ₂	グラウンド2。アイソレータのサイド2のグラ
		ウンド基準。
16	V_{DD2}	アイソレータのサイド2の電源電圧、2.7~
		$5.5\mathrm{V}_{\odot}$

代表的な性能特性

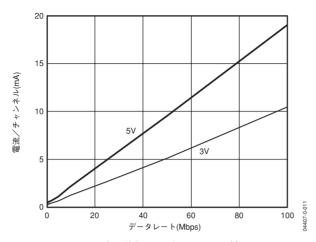


図8. 5Vおよび3V動作でのデータレート対 代表的なチャンネル当たりの入力電源電流

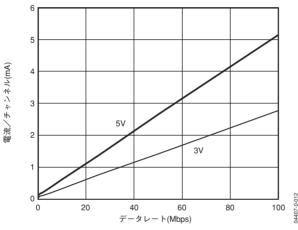


図9. 5Vおよび3V動作でのデータレート対 代表的なチャンネル当たりの出力電源電流(出力無負荷)

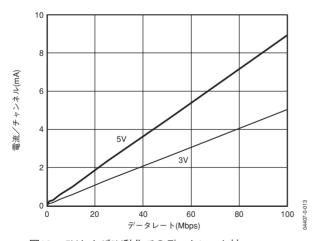


図10. 5Vおよび3V動作でのデータレート対 代表的なチャンネル当たりの出力電源電流(出力負荷15pF)

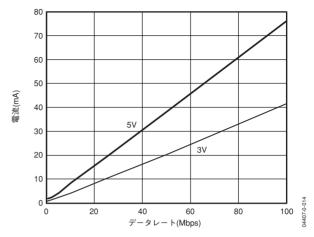


図11. 5Vおよび3V動作でのデータレート対 代表的なADuM1400 V_{DD1}電源電流

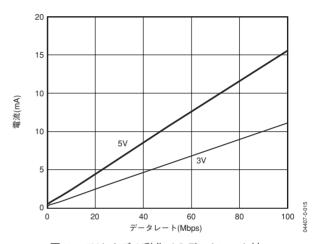


図12. 5Vおよび3V動作でのデータレート対 代表的なADuM1400 V_{DD2}電源電流

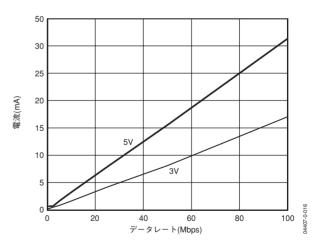


図13. 5Vおよび3V動作でのデータレート対 代表的なADuM1401 V_{DD1}電源電流

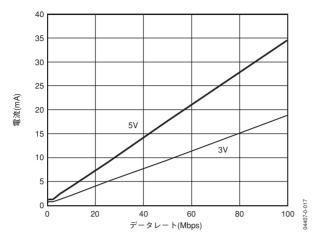


図14. 5Vおよび3V動作でのデータレート対 代表的なADuM1401 V_{DD2}電源電流

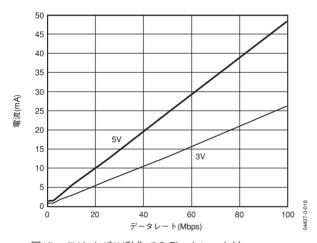


図15. 5VおよV3V動作でのデータレート対 代表的なADuM1402 $V_{\rm DD1}$ または $V_{\rm DD2}$ 電源電流

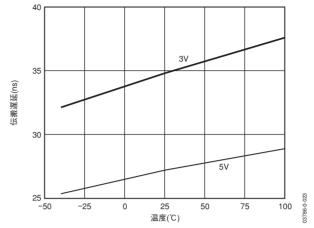


図16. 伝搬遅延の温度特性(Cグレード)

アプリケーション情報

PCボードのレイアウト

ADuM140xデジタル・アイソレータには、ロジック・インターフェース用の外付けインターフェース回路は不要です。入力電源ピンと出力電源ピンにはバイパス・コンデンサを接続することを強く推奨します(図17)。バイパス・コンデンサは V_{DDI} ではピン1と2の間に、 V_{DD2} ではピン15と16の間に接続するのが便利です。コンデンサの値は、 $0.01\sim0.1\,\mu$ Fにします。コンデンサの両端と入力電源ピンとの間の合計リード長は20mmを超えないようにします。各パッケージ側のグラウンド対がパッケージのすぐ近くで接続されていない限り、ピン1と8の間およびピン9と16の間でバイパスしてください。

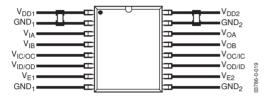
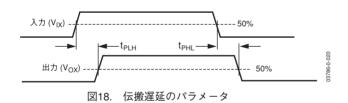



図17. PCボードの推奨レイアウト

高いコモン・モード過渡電圧が発生するアプリケーションでは、 絶縁バリアを超えるようなボード上での結合が起こらないように 注意する必要があります。さらに、いかなる結合も部品側のすべ てのピンで等しくなるようにボード・レイアウトを設計する必要 があります。この注意を怠ると、ピン間で発生する電位差がデバ イスの絶対最大定格を超えてしまい、ラッチアップまたは恒久的 な損傷が発生することがあります。

伝搬遅延に関係するパラメータ

伝搬遅延時間は、ロジック信号が部品を通過するのに要する時間を表すパラメータです。ロジック・ローレベル出力への伝搬遅延は、ロジック・ハイレベルへの伝搬遅延と異なることがあります。

パルス幅歪みはこれら2つの伝搬遅延値の間の最大の差をいい、 入力信号のタイミングが部品の出力信号で再現される精度を表し ます。

チャンネル間マッチングは、1個のADuM140x製品内にある複数 チャンネル間の伝搬遅延差の最大値を表します。

伝搬遅延スキューは、同じ条件で動作する複数のADuM140x製品間での伝搬遅延差の最大値を表します。

DC精度と磁界耐性

アイソレータの入力における信号の遷移(ハイレベル/ローレベル時)により、狭いパルス(約1ns)がトランス経由でデコーダに送信されます。デコーダはハイレベルでもローレベルでも安定しており、したがってパルスによるセットまたはリセットで入力ロジックの遷移を表します。入力に 2μ s以上ロジック遷移がない場合、出力のDC精度を確保するため、正しい入力状態を表す周期的なリフレッシュ・パルスのセットが送出されます。デコーダが約 5μ s間以上この内部パルスを受信しないと、入力側が電源オフまたは非動作状態にあるとみなされ、ウォッチドッグ・タイマ回路によりアイソレータ出力が強制的にデフォルト状態(表10参照)となります。

ADuM140xの磁界耐性の限界は、トランスの受信側コイルに発生する誘導電圧が十分大きくなり、デコーダを誤セットまたはリセットさせる状態が発生する条件で決まります。この状態が発生する条件を、以下の解析により求めます。ADuM140xは3V動作が最も感度の高い動作モードなので、この条件を調べます。

トランス出力でのパルスは、1.0V以上の振幅になります。デコーダは約0.5Vの検出閾値を持つため、誘導電圧に対しては0.5Vの余裕を持っています。受信側コイルでの誘導電圧は次式で求められ

 $V = (-dB/dt) \sum \prod r_n^2; n = 1, 2, ..., N$

ここで.

β = 磁束密度 (ガウス)

N=受信側コイルの巻き数

 r_n =受信側コイル巻き数n回目の半径(cm)

ADuM140x受信側コイルの形状と、誘導電圧がデコーダにおける 0.5V余裕の最大50%であるという条件を前提にすると、最大許容 磁界は図19のように計算されます。

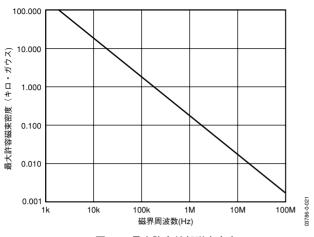


図19. 最大許容外部磁束密度

たとえば、磁界周波数=1MHzで、最大許容磁界=0.2キロ・ガウスの場合、受信側コイルでの誘導電圧は0.25Vになります。これは検出閾値の約50%にあたり、出力遷移の誤動作はありません。同様に、仮にこのような条件が送信パルス内に存在しても(さらにワースト・ケースの極性であっても)、受信パルスが1.0V以上から0.75Vへ減少されるため、デコーダの検出閾値0.5Vよりも余裕を持っています。

前述の磁東密度値は、所与の距離だけADuM140xトランスから離れた特定の電流値に対応します。図20に、周波数の関数としての許容電流値を、所与の距離に対して示します。図から読み取れるように、ADuM140xの耐性は極めて高く、影響を受けるのは、高周波でかつこのICに近接して流れる極めて大きな電流の場合に限られます。前述の1MHzの例では、部品動作に影響を与えるには、0.5kAの電流をADuM140xから5mmの距離まで近づける必要があります。

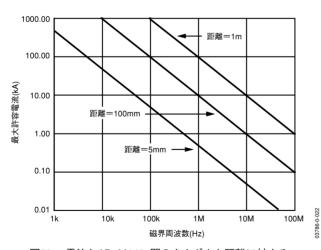


図20. 電流とADuM140x間のさまざまな距離に対する、 最大許容電流

強い磁界に高周波が重なると、PCボードのパターンで形成されるループに十分大きな誤差電圧が誘導されて、後段回路の閾値がトリガされてしまうことに注意が必要です。パターンのレイアウトでは、これを防止するように注意する必要があります。

消費電力

ADuM140xアイソレータ内のあるチャンネルの電源電流は、電源電圧、チャンネルのデータレート、チャンネルの出力負荷の関数です。

各入力チャンネルに対して、電源電流は次式で求められます。

$$I_{DDI} = I_{DDI(Q)}$$
 $f \le 0.5f_r$
 $I_{DDI} = I_{DDI(D)} \times (2f - f_r) + I_{DDI(Q)}$ $f > 0.5f_r$

各出力チャンネルに対して、電源電流は次式で求められます。

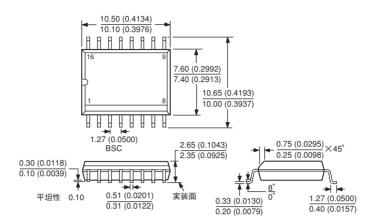
$$I_{DDO} = I_{DDO(Q)}$$
 $f \le 0.5f_r$
 $I_{DDO} = (I_{IDDO(D)} + (0.5 \times 10^{-3}) \times C_L V_{DDO}) \times (2f - f_r) + I_{DDO(Q)}$ $f > 0.5f_r$

ここで、

 $I_{DDI(D)}$ と $I_{DDO(D)}$ はそれぞれ、チャンネル当たりの入力および出力ダイナミック電源電流です(mA/Mbps)。

 C_l =出力負荷容量(pF)

V_{DDO}=出力電源電圧(V)


f=入力ロジック信号周波数(MHz、入力データレートの1/2、NRZシグナリング)

 f_r =入力ステージ・リフレッシュ・レート(Mbps)

 $I_{DDI(Q)}$ と $I_{DDO(Q)}$ はそれぞれ、指定された入力および出力静止電源電流です(mA)。

 $I_{DDI} \ensuremath{
ensuremath{
loss}{loss}{loss}{loss}{e}$ をキャンネルの入力と出力の電源電流を計算して合計します。図8と9に、無負荷状態の出力に対して、データレートの関数としてのチャンネル当たりの電源電流を示します。図10に、15pF負荷の出力に対して、データレートの関数としてのチャンネル当たりの電源電流を示します。図11~14に、ADuM1400/ADuM1401/ADuM1402のチャンネル構成に対して、データレートの関数としての電源電流 $I_{DDI} \ensuremath{
ensuremath{
loss}{loss}{e}}{e}$ の電源電流 $I_{DDI} \ensuremath{
loss}{e}$ ので記述である計を示します。

外形寸法

JEDEC規格MS-013AAに準拠 括弧内のインチ寸法はミリメートル値の概数であり、参考用に表示しています。 設計には使用しないでください。

図21. 16ピン標準SOP[SOIC]-ワイド(RW-16) 寸法単位:mm (インチ)

オーダー・ガイド

			最大データ・	最大伝搬	最大パルス		
	入力数、	入力数、	レート	遅延、5V	幅歪み	温度範囲	パッケージ・
製品モデル	V _{DD1} 側	V _{DD2} 側	(Mbps)	(ns)	(ns)	(°C)	オプション'
ADuM1400ARW ²	4	0	1	100	40	-40~105°C	RW-16
ADuM1400BRW ²	4	0	10	50	3	-40~105°C	RW-16
ADuM1400CRW ²	4	0	90	32	2	-40~105°C	RW-16
ADuM1400ARWZ ^{2,3}	4	0	1	100	40	-40~105℃	RW-16
ADuM1400BRWZ ^{2,3}	4	0	10	50	3	-40~105℃	RW-16
ADuM1400CRWZ ^{2,3}	4	0	90	32	2	-40~105°C	RW-16
ADuM1401ARW ²	3	1	1	100	40	-40~105℃	RW-16
ADuM1401BRW ²	3	1	10	50	3	-40~105°C	RW-16
ADuM1401CRW ²	3	1	90	32	2	-40~105°C	RW-16
ADuM1401ARWZ ^{2,3}	3	1	1	100	40	-40~105°C	RW-16
ADuM1401BRWZ ^{2,3}	3	1	10	50	3	-40~105℃	RW-16
ADuM1401CRWZ ^{2,3}	3	1	90	32	2	-40~105℃	RW-16
ADuM1402ARW ²	2	2	1	100	40	-40~105℃	RW-16
ADuM1402BRW ²	2	2	10	50	3	-40~105℃	RW-16
ADuM1402CRW ²	2	2	90	32	2	-40~105℃	RW-16
ADuM1402ARWZ ^{2,3}	2	2	1	100	40	-40~105℃	RW-16
ADuM1402BRWZ ^{2,3}	2	2	10	50	3	-40~105℃	RW-16
ADuM1402CRWZ ^{2,3}	2	2	90	32	2	-40~105°C	RW-16

¹ RW-16=16ピン・ワイドのSOIC

²「テープ&リール」も提供しています。製品モデルの末尾に「-RL」が付いている場合、直径13インチ(1000個入り)の「テープ&リール」をオプションとして提供しています。

³ Z=鉛フリー製品

TDS07/2004/PDF

ADuM1400/ADuM1401/ADuM1402